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Abstract

An electromagnetism module is under development in the commercial software
LS-DYNA in order to perform coupled mechanical/thermal/electromagnetic
simulations. The main part of the module is a so-called “eddy current” solver.
This module allows us to introduce source electrical currents into solid conductors,
and to compute the associated magnetic fields, electric fields, induced currents,
Lorentz forces, Joule heating and so forth. The Maxwell equations are solved using
a Finite Element Method (FEM) for the solid conductors coupled with a Boundary
Element Method (BEM) for the surrounding air (or insulators). Both the FEM
and the BEM are based on discrete differential forms (Nedelec-like elements).
The use of the BEM for the air allows to handle complex 3D geometries with
multiply connected conductors, very small air gaps, and motion of the conductors,
due, in particular, to the electromagnetic forces. The variable of the BEM is a so-
called “surface current” allowing the connection of the model to external current
sources by simple dirichlet constraints, as well as direct computations of the self
and mutual inductances of the system. In order to handle the large and dense BEM
matrices, a domain decomposition is performed and low rank approximations are
done on the off-diagonal blocks of the resulting block matrices. The diagonal
blocks are used as an efficient preconditioner when solving the BEM part of the
system. The singularities arising in the computation of the self and neighbor matrix
elements of the Galerkin BEM are taken into account using a method based on
Duffy transforms. The BEM method will be presented as well as benchmarks and
real life application examples.

Keywords: eddy current, finite element method, boundary element method, Nedelec
elements, contact, coupled mechanical/thermal/electromagnetic simulations.

WIT Transactions on Modelling and Simulation, Vol 61, © 2015 WIT Press
www.witpress.com, ISSN 1743-355X (on-line)
doi:10.2495/BEM380251



312 Boundary Elements and Other Mesh Reduction Methods XXXVIII

1 Introduction

LS-DYNA is a highly advanced general-purpose nonlinear finite element program
that is capable of simulating complex real world problems. It is suitable to
investigate phenomena that involve large deformations, sophisticated material
models and complex contact conditions. LS-DYNA allows running an analysis
explicitly or implicitly and combining different disciplines such as coupled
thermal analysis, fluid dynamics, fluid-structure interaction, SPH (smooth Particle
Hydrodynamics), EFG (Element Free Galerkin) [1]. An electromagnetism (EM)
module is under development in LS-DYNA in order to perform coupled
mechanical/thermal/electromagnetic simulations [2]. This module allows us to
introduce some source electrical currents into solid conductors, and to compute
the associated magnetic field, electric field, induced currents, Joule heating
and electromagnetic (Lorentz) force. These fields are computed by solving the
Maxwell equations in the eddy current approximation. The eddy current solver
is the main part of the EM module, although an induced heating and resistive
heating solvers have also been added. Since the EM module is part of a commercial
software, it is used intensively in all sorts of geometries and with all kinds of
meshes, some of them being of rather poor quality. A lot of effort was thus spent
making the numerical method robust enough. On the bright side, we get extensive
benchmarks and a lot of feedback on the method. In order to best handle the
motion of the conductors without the need to remesh the air surrounding them, the
electromagnetic fields are solved using a Finite Element Method (FEM) coupled
with a Boundary Element Method (BEM). Since the FEM is based on differential
forms, the BEM also is based on this same representation, in order to have a
correspondence between the FEM and BEM basis functions at the surface of the
FEM mesh, which corresponds to the BEM mesh.

In this paper, we will first present the physical problem and give a brief overview
of the FEM used, and we will then focus in more details on the BEM, and in
particular on the FEM/BEM coupling, the treatment of the singular integrals, the
BEM matrices storage and solve and the contact. We will then show the different
capabilities of the BEM on industrial and academic examples.

2 Presentation of the problem
2.1 Physical problem

The following is a summary of what is presented in more details in [2]. Let {2 be a
set of multiply connected conducting regions. The surrounding insulator exterior
regions will be called €2.. The boundary between (2 and €. is called I". In the
following, we will denote 7i as the outward normal to surfaces I'. The electrical
conductivity, permeability and permittivity are called o, p and € respectively. In
Q., we have 0 = 0 and p = pg. For all our applications, we can use the low
frequency or “eddy current” approximation, valid for good enough conductors with
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low frequency varying fields such that the condition

OFE .
—_— FE 1
Eat Lo @))

is satisfied, where E is the electric field. This approximation implies a divergence
free current density and no free charge accumulation. Also, in all our cases, the
permittivity is equal to the vacuum one: € = €.

In the eddy current approximation, the Maxwell equations read:

6xE:J§ (Faraday) 2)
V x % =7 (Ampere) 3)
VeB =0 (Gauss-magnetism) 4)
Veck =0 (Gauss-electricity) ®))
Vej=0 (Gauss) (6)
j=0E (Ohm) 0

B =uH  (Constitutive eq.) (8)

where B is the magnetic flux density and ] the current density. The divergence
condition (4) allows to introduce the magnetic vector potential A such that

—

B=VxA )

Using equation (2), we can then write the electric field as:

E=-V¢— (10)

where ¢ is the so-called electric scalar potential [3]. When using the Gauge
condition:

VeoA=0 an
equations (3), (6), (7), (9), (10) and (11) imply:

VeosVp=0 (12)
U%Jrﬁxlﬁxlz—a% (13)
ot I

These two equations, along with suitable boundary conditions give the time
evolution of A and ¢, from which we get the electromagnetic fields by (10), (9)
and (7).
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2.2 General numerical method: FEM coupled with BEM

(12) is a Laplace equation and (13) a diffusion equation, hence the other name
“diffusion-induction”, sometimes used for the eddy current model (we shall see
later about the “induction” part). Since these equations mostly deal with exterior
derivatives of vector fields, we decided to use a finite element method based
on differential forms, often referred as “edge elements” or “Nedelec elements”
[4]. More precisely, we are using the FEMSTER library [5] which provides a
discrete numerical implementation of the exterior derivatives, gradient, curl and
divergence, and the corresponding elemental matrices on hexahedral, prismatic
and tetrahedral elements [6]. In this representation, each electromagnetic field
is represented by a certain type of form, depending on how it appears in the
equations, forming a so-called “Tonti” diagram [7, 8]. Figure 1 represents the
position of the different fields of the eddy current model in a Tonti diagram, and
Table 1 gives some details about the different forms.

Primal Space Dual Space
® O0-Form _MoSe | 3-Form
To1l9rad Dos I (Tol)"
- -
A E 1-Form __MuS: _ 2-Form
Tnlcurl D,, t (Ts2)"
i -
B 2-Form _MzS: _ 1Form H
T23ldiv D23 I (T23)T
3-Form Ms,Ss__ 0-Form

Figure 1: Tonti diagram for the eddy current problem showing the different forms,
matrices and position of the EM fields.

Table 1: Definition of the /-forms, along with their Degrees Of Freedom (DOFs).

Form type Associated with DOFs Basis
0-form Nodes Nodal value Wo
1-form Edges Line integral Wi
2-form Faces Flux WQ
3-form Cells Volume integral W3
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The basis functions define spaces with an exact representation of the De-Rham
sequence [6]. They also exactly satisfy numerical relations such as curl(grad) =
or div(curl) = 0. The basis functions associated respectively with the 0, 1, 2, and
3- forms will be noted W, Wl, WQ, and Wj3. Equation (12) is integrated against
the W° forms and equation (13) against the W forms giving, after integrating by
part, the following weak formulations [9]:

/UﬁﬁﬁW%QZO (14)
Q
a@-wldm/ lwx 1) - (V x WHdQ =
o Ot QM
f/oﬁq%WldQJr/l[ﬁx (V x A)]- Wil (15)
Q r M

which, after projecting ¢ on the Wy forms and A on the W; forms, give the FEM
linear systems, which we write, with the same notations as in Figure 1, as:

S°(0)p=0 (16)

1,y da (1 _ ot
M (o )dt +S (,u)a_ D" (0)¢ + Sa a7

3 Introduction of the BEM
3.1 Presentation of the method

The goal of the BEM is to compute the last surface term of (15), or (17), i.e.
Sa. This term represents the interactions between the different conductors through
the EM fields in the air surrounding them, which in the eddy current model is
the induction effect. So the diffusion part is solved by the FEM and the induction
by the BEM. In order to compute this term, we introduce an intermediate “surface
current” k. This surface current, which i _is not a physical field, is chosen such that
it produces the same vector potential A, and thus magnet1c field B in the air Qe
surrounding the conductors, as the physical volume current j. This means that for
any point in the air, the knowledge of this surface current is strictly equivalent to
the knowledge of the actual electromagnetic fields inside the conductors. The use
of a surface vector field compared to a scalar one gives flexibility to have multiply
connected conductors with non simple topologies. From the Biot-Savart equation,
the vector potential generated by k reads:

O ) 1 -

A I 1
@ =1 [ g, (18)
Vx € Q. (and thus for z € T).
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It then can be shown that [10]:

-,

[t x (V x A)](7) =" K(7)

Ho 1 N - _» P
A7 r, |.’IJ _ y)|3 [( y) (y)] Y

In order to have a BEM with basis functions corresponding to the ones of the
FEM on the surface of the conductors, thus avoiding extra matching constraints on

- =/
the boundary, we still decompose A on the W1 s and introduce a set of “twisted”
1-form surface basis functions for k [10]:

Vieidx W! (20)
K= ki V1 @1
i=1,Ng

where Ng is the number of boundary edges. At first order, a twisted 1-form
associated with a surface edge represents a surface current flowing across the edge,
i.e. with a unit surface flux across the edge and a zero surface flux across all the
other surface edges. By projecting equation (18) and k on the “twisted” 1-form
basis and equation (19) against Wi, we get a Galerkin BEM linear system which
reads:

Pk = Da (22)
Sa = Qk = Q,k + Q k (23)

where
D(iij) = | Vil@) - Wy(@) Ty (24)
P(i’j)_/rz /F |fim‘7i(f) Vi(ij) dU'dl, (25)
Q)= | Wi(e) - Vj(x) dT, (26)

/ 1 q‘gm*/xx) : (n; x [(f—ﬁ) X ‘%(y)}) dl,dl, (27)

The coupled FEM+BEM system is solved at each time step by doing Richardson
iterations between the FEM (17) and (23) and the BEM (22) equations until
convergence:

Pk, =Day"! (28)

[Ml(a)+dtsl (;)] ayty =M (0)a’ — diD” (0)¢" ™" + dtQk  (29)
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3.2 Divergence free surface current

As already mentioned, The surface current k is an equivalent boundary current to
the physical volume current j flowing through the volume of the conductors, and
needs to be divergence free [10]. However, the twisted 1-forms basis functions
(20) do not satisfy this divergence free constraint, since they create some net flux
entering the 2 faces that lie on each side of the edge they are associated with.
We first added the divergence free as an external constraint to the BEM system
(22). More recently, we introduced the so-called “loop-star” solenoidal-irrotational
decomposition into the divergence free “loop” basis functions and the other “star”
ones [11,12]. As shown in Figure 2, a loop basis function associated with a node
can be seen as a linear combination with coefficients 41 or —1 of twisted 1-forms
associated with all the edges originating from the node, so that it represents a
(divergence-free) surface current flowing around the node.

ol (3
N

-

Vi

Figure 2: A loop vector basis function around node i, as the sum of the 4 twisted
1-forms V; + Vi, + Vi + V..

One can show that when using first order basis functions, the loop basis
functions associated with all the nodes of the surface mesh (except one per
connected part) form a complete basis of the divergence free currents for
topologically simple conductors, like a sphere [11]. For non simple conductors,
i.e. containing holes or “handles”, a few extra non-local basis functions that we
call “global currents” need to be added. For example, in the case of a prismatic
conductor connected to an external circuit on each end, there is one global current
representing a current flowing from one side to the other of the prism (see
Figure 3). In the case of a torus, two extra global currents need to be added, one
corresponding to a current flowing in the toroidal direction, and one corresponding
to a current flowing in the poloidal direction.

An algorithm based on the construction of a spanning tree on the surface mesh
has been developed to automatically count the number of connected parts, get
their topologies by computing the “Betti numbers” [13], and in particular the
number of global currents, and then set the global current basis functions as linear
combinations of the 1-form basis functions. As can be seen in Figure 3, contrarily
to the loop basis functions, the “global currents” are non-local basis functions
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Va

Vi

Surface "hole"

Figure 3: Global current on a prismatic conductor connected to an external circuit
on each side, represented by the divergence free Vi + V5 + V3.

(hence their name), making the computation of the corresponding BEM matrices
entries somewhat cumbersome. But on the bright side, the degree of freedom
associated with each global current represents the total current flowing through
the corresponding conductor and can be used to impose current vs time constraints
as a simple dirichlet constraint in the BEM system (one dirichlet constraint per
imposed current). This method allows imposing currents in geometries where more
traditional methods using dirichlet conditions on the FEM system (16), (17) would
require the introduction of cuts and/or multi-valued Degrees Of Freedom [14].
The above mentioned toroidal current in a torus is such an example. The use of
“loop” + “global current” basis functions also gives an easy way to compute
the self and mutual inductances, by solving the BEM system (22) with simple
dirichlet constraints. It also allows to impose simple linear constraints between
global currents like imposing that the current flowing through one conductor is
equal to the one flowing through another one.

3.3 Numerical treatment of the singular integrals

As can be seen in (25) and (27), and as often is the case when dealing with a
BEM, some integrals are singular on self and neighbor faces. Different methods to
numerically treat these integrals have been proposed. For a long time, we used the
simple method presented in [15] for self faces, which gives 2 sets of gaussian
points as well as integration weights, hence a very simple integration scheme.
We also just used the standard gauss points for neighbor faces. This method
proved to be very efficient and fairly accurate for simple enough geometries with
good quality meshes. Soon enough, however, customers started to use the method
with elements (and hence boundary faces) with high aspect ratio, causing issues.
We thus had to improve the method in order to incorporate these elongated faces,
as well as handling triangular faces on top of the quadradic ones, since tetrahedra
and prisms were also introduced on top of the already used hexahedra in the FEM.
We are thus now using a method based on Duffy transforms [16, 17], which gives
sets of integration points and weights for pairs of faces, either self (face against
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itself), neighbors with common edge or neighbors with common node. The scheme
is slightly different depending on the type of each face (quadrilateral or triangle).
We also introduced a method based on [18] in order to split faces with very large
aspect ratio into better conformed ones for the computation of the corresponding
singular integrals. On typical cases (around 100,000 BEM faces), the computation
of the singular integrals can take up to 25 percent of the total assembly of the BEM
matrices, and this process has thus been parallelized.

3.4 Matrix storage and solve

In order to limit the memory requirement, a domain decomposition is done on
the BEM mesh, which splits the BEM matrices into blocks. On the non-diagonal
blocks, a low rank approximation based on a rank revealing QR decomposition is
performed, see Figure 4. For blocks corresponding to far away domains, the rank
can be significantly smaller than the size of the block, thus reducing the storage of
the block. We typically see reductions by factors around 20 or more between the
full dense matrix and the block matrix with low rank approximations, also called
Block Low Rank, or BLR [19]. As the rest of LS-DYNA, the matrix assembly is
implemented in Massively Parallel Processing (MPP), where the blocks are spread
between processors using a method described in [20]. The BEM system (22) is
currently solved using an iterative method, Preconditioned Conjugate Gradient
(PCG), where the preconditioner usually used is the diagonal block of the matrix
[21]. The BLR representation of the matrix also speeds up considerably the matrix
times vector operation used intensively in the PCG. A direct factorization of the
BLR matrix in MPP is currently being developed at LSTC, which will allow us to
use a direct solver instead of the PCG.

Figure 4: Domain decomposition of a BEM mesh (left) in 4 domains resulting in
a four by four block matrix (right). The diagonal blocks are kept dense,
and low rank approximations are performed on the others.
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4 Features of the BEM and examples
4.1 Benchmark: the TEAM cases

Along with the development of the electromagnetism module, different series
of validation tests have been conducted. The TEAM (Testing Electromagnetic
Analysis Methods) problems consist in a set of test-problems, with precisely
defined dimensions, constitutive laws of materials, excitations and so forth, with
experimental measurements on a real laboratory device [22]. The TEAM 3
problem is a classic validation test case often studied [10,23] and consists of a
conducting ladder with two holes, placed below a coil carrying a sinusoidal current
[22]. The coil is made of multiple turns strongly stranded together producing
a uniform current while the induced current in the ladder diffuses through its
thickness (the full eddy current problem is solved). The main objective of this
test case is to study the behavior of the magnetic field along the symmetrical axis
of the problem and between the coil and the ladder. In Figure 5, it can be observed
that the biggest part of the current flows around the hole directly located under
the coil. Good agreement between experimental and numerical results can also be
observed. More benchmarks on various TEAM problems are presented in [24].

12 Team 3

Bz (mT)

-40 -20 o 20 a0

x (mm)

Figure 5: Current density fringes and Bz magnitude variation along the center line.
Comparison between LS-DYNA (in red) and reference experimental (in
blue) results.

4.2 Small gaps and conductor motion

Electromagnetic Metal Forming (EMF) [25], bending or welding [26] are some of
the most common applications of the EM solver. EMF is a high velocity forming
process where the force deforming the workpiece is a magnetic one, generated by
an electrical current induced in the workpiece by a coil. Much work has shown
that the formability can be significantly increased, wrinkling can be mitigated and
springback can be reduced [27]. Forming of aluminum has been the main focus
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of EMF, due to its potential as a means of reducing automobile weight [28]. A
typical forming setup involves one or several coils, a workpiece and a die. Strong
deformations happen over a very brief period of time which the electromagnetism
solver needs to be able to handle. The coil shapes are also often very complex, with
several turns and with sometimes only small gaps between them, further adding
to the difficulty. The case presented here features a spiral type coil and a 1 mm
thick aluminum sheet forming on a conical die. The experiment was performed
at the Department of Mechanical Engineering, University of Waterloo, Ontario,
Canada [28]. Figure 6 shows the evolution of the shape of the plate.

Figure 6: Magnetic Metal Forming simulation results: 3D shape of the sheet (left,
only half of the sheet is represented), and current density in a cross
section of the sheet at various stages during the forming process. The
scale in the z-direction has been increased in the cross sections for better
visibility.

Figure 7: Magnetic Metal Forming: numerical (left) and experimental (right) final
shape of the sheet.

Figure 7 shows a comparison between the numerical and experimental final
shape of the sheet, which shows a very good agreement. More details on the
experimental/simulation comparisons can be found in [2], and more quantitative
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benchmarks are in [29] and [30]. More recently, the eddy current model was
extended to an induced heating solver. It is primarily used for industrial welding
applications where the need to have spatially and temporally controlled joule
heating makes the use of a simulation software very important, in order to design
the heating coils, and generators [31]. The study of the over-heating and possible
deterioration of the coil as well as ways to cool it down also represent an important
use of the code. For slower varying fields, where the inductive effects can be
neglected, a resistive heating solver was also introduced.

4.3 Contact: local remeshing of the BEM mesh

Since the conductors are allowed to move and deform, some contact may occur.
Also, some applications like rail guns [32] need a sliding contact capability. In
the FEM, the contact is handled using “mortar” like constraints, i.e. by imposing
appropriate constraints on the Degrees Of Freedom (DOFs) between the 2 sides
of the contact [33]. We first tried the same kind of technique in the BEM, by
replacing the divergent matrix entries in the contact area by constraints between
the corresponding BEM DOFs. The different constraints we tried failed to give
accurate results or were not robust enough, so we finally decided to opt for a
local remeshing of the BEM mesh at each time step. More specifically, in the
areas where contact is detected (basically when the distance between 2 BEM
faces becomes small enough), the BEM faces in contact are removed from the
BEM mesh and a patented algorithm [34] allows to “stitch” the two open BEM
surfaces together by building a “skirt” made of triangular faces, in order to achieve
a continuous closed BEM mesh (see Figure 8). The BEM system can then be

Figure 8: Remeshing of the BEM mesh around a contact area: a: The faces in
contact on each side are removed. b: The faces next to the contact are
shrunk to ensure a sufficient gap. c: Creation of the contact “skirt” by
adding triangle faces between the 2 sides of the contact.
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solved on this regular BEM mesh and appropriate constraints are added to connect
the BEM DOFs to the FEM ones in the skirt areas. Figure 9 presents a rail gun
application with a sliding contact. In a rail gun, the electromagnetic forces created
by an electrical current are used to accelerate a projectile sliding between two
conductor rails. Since the scheme depends on the current flowing between the rails
and the projectile, it is a very good test for electromagnetism contact capabilities.
More results on rail gun simulations are shown in [35].

Figure 9: Railgun model showing the motion of the projectile between the 2 rails,
with iso-contours of the B field.

5 Conclusion

We presented a BEM that, coupled with a FEM, allows to efficiently solve the
Maxwell equation in the eddy current approximation, for a set of 3D multiply
connected conductors. A 2D axisymmetric version also is available where, on
the BEM side, the main change is in the kernel. Since it is used in a commercial
code, this method has been extensively tested on all sorts of cases with different
geometries and different type of meshes, and has proven very robust. The EM fields
are coupled with the mechanics and the thermal part of the code, thus allowing
changes in the conductor geometries and electrical conductivities, which, on the
developer side, allows testing the method on different geometries within the same
run. However, even with the MPP setting of the method, the BEM part of system
still takes more than half of the total computational time of the EM, so a BLR
factorization is being developed in order to reduce the solve time of the BEM
system. The plans for the near future are the extension of the method to magnetic
as well as to piezzo-electric materials, both of which should have some effect on
the BEM. Longer term projects may also include the investigation of other BEM
based on multipole methods.
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