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Abstract 

The authors present the formulation of the indirect boundary element method 
(IBEM) for an axisymmetric Stokes flow with a free surface in the presence of 
gravity. The formulae of the fundamental solutions of the Stokes equations are 
found for velocities and tractions in the axisymmetric case. These expressions are 
written in the cylindrical coordinate system and contain the elliptic integrals of the 
first and second kind. For the integral equations discretization the constant 
elements are used. The necessary integrals are evaluated numerically except for 
the singular ones. The analytical formulae are obtained for them. Two boundary-
value problems with mixed conditions are considered. The problem of the 
Poiseuille flow of a viscous fluid in a round tube with the exact solution was 
calculated to verify the IBEM algorithm and to demonstrate its approximation 
convergence. Another problem of the cylindrical tube filling by a viscous fluid 
with a free surface was calculated to prove the IBEM in the case of a moving 
boundary. The simulation in a steady-state formulation showed that the stationary 
advancing front shapes exist in both cases when the gravity acts against the flow 
(Stokes number St<0) and aids the flow (0<St≤0.94). In the case of the Stokes 
parameter values greater than 1 the fountain flow was replaced by a jet flow. The 
stationary advancing front shapes were calculated in the range -400≤St≤0.94 and 
compared with the famous data. 
Keywords: boundary element method, free surface, axisymmetric flow, Poiseuille 
flow, cylindrical tube, filling, fountain flow, injection molding. 

1 Introduction 

The indirect boundary element method (IBEM) is an effective means to solve the 
fluid dynamics problems at low Reynolds numbers (Stokes flows) with a free 
surface. Its application in combination with the use of the constant elements made 
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it possible to investigate a number of practically important flows [1–4]. In these 
papers the two-dimensional creeping flows whose characteristic feature is the 
presence of a free surface are considered. The basics of the method under 
consideration are the positions formulated by Brebbia [5]. They are realized by 
applying the constant elements and the analytical expressions for calculation of all 
the necessary integrals including those with singularities. Such approach enables 
to study the flows with great deformations of the free surface interacting with the 
solid walls. In the present paper the IBEM is applied to solve the axisymmetric 
problems which have much in common with the two-dimensional ones from the 
viewpoint of the practical realization. For example, the algorithms of modeling the 
motion of the free surface front practically coincide. At the same time there are 
essential differences. First of all one should apply the cylindrical coordinate 
system instead of the Cartesian one. The components of the fundamental tensors 
of velocities and tractions in the cylindrical coordinate system should be 
previously integrated with respect to the angular coordinate. As a result, one 
obtains the expressions containing the elliptic integrals of the first and second 
kind. The integration of these expressions with respect to the element is very 
difficult; therefore one should apply the numerical quadratures. The problem of 
singular integral calculation is of importance. 
     The application of the direct boundary element method and a similar method 
of the fundamental solutions to investigate the axisymmetric problems was 
discussed earlier in a great number of papers [6–12]. These works touch upon both 
the fluid dynamics and the elastic theory. They contain many useful equations to 
calculate the necessary integrals. For example, Pozrikidis [6] gave the expressions 
for the components of the fundamental tensor of velocity integrated with respect 
to the angle coordinate, Park’s paper [9] contains some formulae which are 
required to calculate such expressions and their limiting values. The examined 
fluid dynamics problems mainly concern the modeling of the viscous fluid flow 
around the axisymmetric bodies. 
     In the present paper the application of the IBEM for the Stokes flow modeling 
is discussed on the two examples: the Poiseuille flow (the formulation includes 
specifying tractions components on a part of the boundary) and the fountain flow 
in the steady-state formulation. The obtained results make it possible to come to 
the conclusion concerning the efficiency of this numerical algorithm. 

2 Governing equations and problem formulation 

The creeping flow of a viscous fluid in the gravity field is described by the Stokes 
equation which can be represented in the dimensionless form as 

St 0  gσ e ,                                                 (1) 

where 2p  σ I E  is the stress tensor, p  is the pressure, I  is the unit tensor, 

 *1
( )

2
   E u u  is the rate-of-strain tensor, u  is the velocity vector, g  is the 

acceleration vector of the gravity force, / gge g , g  g , 
2

St
gR

U





 is the 
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Stokes number,   is the fluid density,   is the dynamic viscosity coefficient, R  

and U  are the characteristic values of the length and velocity chosen as scales. 

The pressure scale is 
U

R


. 

     One can remove the constant term from equation (1), this is important while 
transferring to the boundary integral. For this purpose it is necessary to introduce 
the potential of the gravity force 

 ge , 

where ( )    gr e , r  is the radius-vector of the point x . Then equation (1) 

becomes homogeneous 
' 0 σ ,                                                     (2) 

where ' 2mp  σ I E , Stmp p    is the modified pressure. 

     Equation (1) should be considered together with the continuity equation 
0 u .                                                     (3) 

     The boundary conditions for equations (2), (3) are specifying the velocity 
vector values 0( )u x  or traction vector values 0 0 0( ) ( ) ( )t x σ x n x , where 0x  are 

the points belonging to the boundary of the flow region, and 0( )n x  is an outward 

unit normal vector to the boundary. The velocity vector can be specified on the 
inlet (outlet) boundary or on a solid wall when the no-slip boundary conditions are 
used. The traction vector is specified mainly on the free surface, where its value 
should be equal to zero 

0( ) 0t x .                                                    (4) 

     Taking into account that equation (1) is used in the form (2), condition (4) is to 
be applied for the traction vector expressed in modified stress tensor: 

0 0 0 0 0 0'( ) '( ) ( ) ( ) St ( ) ( )   t x σ x n x t x x n x . 

    Consequently, boundary condition (4) takes on the form 

0 0 0 0'( ) St( ( ) ( )) ( )  gt x r x e x n x .                                   (5) 

     In addition to the dynamic condition (5) the free surface is governed by the 
kinematic condition which can be written down either in the Lagrangian 

0
0

( )
( )

d

dt


r x
u x , 

or the Euler form 

0( ) 0
F

gradF
t


  


u x .                                        (6) 

where ( , ) 0F x t   is the free surface equation. 

     Thus, the problem of the Stokes flow with the free surface is of the quasi-
stationary character. The initial conditions are to give the boundary shape at the 
initial momentum of time. Then the boundary-value problem is solved for 
equations (2), (3) with the specified values of velocity vector 0( )u x  on the one 

part of the flow region boundary and values of the traction vector 0'( )t x  on the 

other. Further, according to the found velocity distribution on the free surface one 

Boundary Elements and Other Mesh Reduction Methods XXXVIII  275

 
 www.witpress.com, ISSN 1743-355X (on-line) 
WIT Transactions on Modelling and Simulation, Vol 61, © 2015 WIT Press



evaluates its new shape by applying the kinematic condition in the notation 
depending on the character of the problem. 

3 Boundary integral equations 

Flow is considered in the axisymmetric region   with the surface S  obtained as 
a result of rotating the constituent   around the axis z  (figure 1). The flow itself 
is also axisymmetric, i.e. the fluid motion velocity depends only on ,r z  and does 
not depend on the angular coordinate  . 
 

 

Figure 1: Boundary value problems (the solution domains and the boundary 
conditions) for the Poiseuille (a) and the fountain flow (b). 

     For the boundary integral formulation of the problem the classical concepts 
leading to the indirect boundary element method will be applied. The fictious 
sources with the density per a unit area equal to ( )φ ξ , Sξ  are considered to be 

distributed over the surface S . In view of the axisymmetry of the vector ( )φ ξ  has 

the form 
( ) ( ) ( ) ( ) ( )r r z z  φ ξ ξ e ξ ξ e ξ , 

where ( )re ξ , ( )ze ξ  are the unit vectors of the axes ,r z  in the point ξ . 

     Then, by applying the superposition principle one can write the following 
integral equations for boundary points 0 Sx : 

0 0 0( ) ( ) ( , ) ( ) ( , ) ( ),r z
r r r z ru u u d



      x ξ x ξ ξ x ξ ξ                      (7) 

0 0 0( ) ( ) ( , ) ( ) ( , ) ( ),r z
z r z z zu u u d



      x ξ x ξ ξ x ξ ξ                     (8) 

0 0 0( ) ( ) ( , ) ( ) ( , ) ( ),r z
r r r z rt t t d



     x ξ x ξ ξ x ξ ξ                      (9) 
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0 0 0( ) ( ) ( , ) ( ) ( , ) ( ),r z
z r z z zt t t d



     x ξ x ξ ξ x ξ ξ                    (10) 

where 
2 2

0 0 0 0

0 0

( , ) ( ) ( , ) ( ), , ( , ) ( ) ( , ) ( ),r r z z
r r z zu r u d t r t d

 

    x ξ ξ x ξ ξ x ξ ξ x ξ ξ   

0( , )r
ru x ξ ,…, 0( , )z

zt x ξ  are the components of the fundamental tensors of velocities 

and tractions of the Stokes equation, they correspond to the unit concentrated 
forces ( )re ξ , ( )ze ξ . The lower index means the vector component in the point 

0x , and the upper one points to the direction of the unit force acting in the point 

ξ  (in this case Sξ ). While writing down equations (7)–(10) it was taken into 

account that the surface element of S  is equal to ( ) ( ) ( ) ( )dS r d d  ξ ξ ξ ξ  and it 

is considered that in the left part of the equations ξ . The components , ,r z
r zu t  

may be obtained from the fundamental solutions of the Stokes equation in the 
Cartesian coordinate system [14]. 
     The left part of equations (7)–(10) is known from the boundary conditions. 
Consequently, the problem consists in determining the unknown density function 

( )φ ξ . Then the necessary flow characteristics may be found in any boundary or 

internal point. 
     The formulae for the integrals , ,r z

r zu t   are of the form 

 2 2
11 31 32 30( ) ( )

8
r
r x x

r
u I r r I r r I I

      


 ,                     (11) 

 31 308
r
z x

r z
u r I r I

  


 ,                                       (12) 

 30 318
z
r x

r z
u r I r I

  


 ,                                       (13) 

 2
10 308

z
z

r
u I z I  


 ,                                        (14) 

 2 2 2
50 52 51 52 51 53

3
( ) ( )( ) ( )

4
r

r x x r x r

r
t cr r I I r r cI r n I r r n I I

          


 ,   (15) 

 2
50 51 52

3
( )

4
r

z x r x r

r
t cr zI z cr r n I r r zn I

      


 ,                   (16) 

 2
50 51 52

3
( )

4
z

r x x r r

r
t cr zI z cr r r n I r zn I

     


 ,                     (17) 

 
2

50 51

3

4
z

z r

r z
t cI r n I

 


 ,                                     (18) 

where ,x xr z  are the coordinates of the point 0x , ,r z   are the coordinates of the 

point ξ , ,r zn n  are the components of the external normal in the point 0x , 

xz z z  , x r zc r n zn  . Moreover 
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 
2

22 2
0

cos ( )
( )

2 cos ( )

n

mn m

x x

I d
z r r r r



 


 

   


ξ
ξ

ξ
. 

     These integrals are expressed by means of complete elliptic integrals of the first 
and second kind and can be calculated using [15]. 

4 Numerical implementation 

Equations (7)–(10) are practically similar to those for the planar case excluding 
the form of the fundamental solutions (11)–(18). In consequence of this, after 
discretization of the boundary by means of the constant elements a system of linear 
algebraic equations is obtained similar to that described in [4]. The extra-diagonal 
coefficients of the matrix may be calculated by the numerical integration (the 
Gauss eight-point quadrature formulae are used in this paper). When computing 
the diagonal coefficients one should use the analytical expressions. 
     The coefficients represent the integrals of the type 

   0 0( , ) ( ), , ( , ) ( )
p p

pp ppr r p z z p
r r z zu u d t t d

 

      x ξ ξ x ξ ξ    , where p  is the 

number of the element, p  is the element p , 0
px  is the node of the element p  

(the middle of the element). 

     The integrals    , ,
pp ppr z

r zu u    have the singularities which are equivalent 

to the logarithmic one. In a planar case the similar integrals for the constant 
elements may be computed exactly [4], but it is very difficult to do this for the 
axisymmetric problem, because the integrands contain the elliptic integrals. For 
this reason they are computed approximately. The approximate expressions for the 
functions , ,r z

r zu u   are obtained by means of breaking down into the Taylor series 

conserving the first order terms. For the approximation of the elliptic integrals the 
approximate formulae of [16] are applied. As a result 

  28
ln 1

2

pp
ppr x

r rp

rS
u n

S

 
       
 , 

    1

2

pp ppr z p
z r r zu u n n S    


  , 

  28
ln 1

2

pp
ppz x

z rp

rS
u n

S

 
       
 , 

where pS  is the length of the element p , p
xr  is the radial coordinate of the node 

p , ,r zn n  are the components of the outward normal vector to the element p . To 

compute the values of integrals    , ,
pp ppr z

r zt t    one should use the results of 

the hydrodynamic potential theory. According to [14] we have 

    1

2

pp ppr z
r zt t      ,     0

pp ppr z
z rt t     . 
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5 Results and discussion 

To verify the computations by applying the above method and to check its 
accuracy the two problems were chosen. The first one was to calculate the flow of 
the viscous incompressible fluid in a cylindrical tube (the Poiseuille flow, figure 
1(a)). The second problem consists in determining the stationary shape of a free 
surface while filling a vertical cylindrical tube with a viscous incompressible fluid 
(the fountain flow, figure 1(b)). This flow is of immediate practical value for the 
injection molding and has been considered by many authors in the numerical and 
experimental studies. 

5.1 The Poiseuille flow 

Setting up the problem of the flow in a cylindrical tube is illustrated in figure 1(a). 
The tube radius and the average flow velocity are taken as the scales of R  and U . 
In such a form the boundary value problem has all the basic types of the boundary 
conditions which occur while investigating the flows with a free surface: the inlet 
boundary, the solid walls and the outlet boundary where the values of the traction 
vector components (the analog of the free surface) are specified.  
     As a result of the discretization of the boundary it was divided into N equal 
elements. In the process of computation the velocity profile on the outlet boundary 
was determined and compared with the famous exact solution 22(1 )e

zu r  . The 
norm of space 2L  was applied to the error estimation: 

1
2

0

( )u u r dr  . 

     Thus, the absolute and relative errors were calculated using the formulae: 

c e
a z zE u u  , 100%

c e
z z

r e
z

u u
E

u


  . 

     The numerical values of c
zu  were calculated in the edges of elements. The 

symmetry condition 0zu r    was applied on the symmetry axis. To obtain the 

values of the non-singular integrals the Gaussian eight-point formulae were used. 
The results are given in figure 2. The chosen scheme of solution makes it possible 
to obtain a quick convergence of the approximate solution to the analytical one 
with increasing the number of elements. 76 elements are sufficient for the relative 
error not to exceed 0.1 shares of a per cent. 
     Thus, it was shown that the presented method of numerical solution could be 
applied further to simulate axisymmetric free-surface flows. 

5.2 The fountain flow 

The aim of the study of a vertical cylinder filling up at a constant flow rate is to 
obtain the stationary advancing front shapes using axisymmetric IBEM and to find 
out the conditions of their existence. 
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Figure 2: The dependence of aE , rE  errors on the number of elements N. 

     The formulation of the corresponding boundary value problem is shown in 
figure 1(b). The flow behavior and, as a consequence, the shape of the free surface 
are completely governed by the value and the sign of the Stokes parameter 
St /gL U   . At St > 0 the gravity force is directed along the fluid flow and aids 

it, and at St < 0 it acts against the flow. At St = 0 the viscosity forces are much 
higher than the gravitational ones and the latter do not affect the flow. 
     The flow is considered in the coordinate system moving together with the fluid 
flow at an average velocity. In this case the steady free surface is to be immobile, 
because it is also moving relative to the walls at an average velocity. For such a 
surface described by the function  ,h r t : 0dh t  . The initial approximation for 

 ,h r t  is the horizontal flat surface. The following approximations were 

calculated using the steady-state approach and in accordance with the kinematic 
condition at the free surface written down in the form of Euler (6). This condition 
gives the following equation to compute the function  ,h r t : 

z r

h h
u u

t r

 
 

 
.                                             (19) 

     The discretization of the boundary is similar as in the previous problem. 
Condition (19) is written down in the finite-difference form as follows: 

     
 

1
1

1

, 0,
,

, 0,

nn nn n n
n n i i rni i i i

z r i nn i i n n
i i r i

h h uh h h
u u h

t r h h u






           
          (20) 

where 1/r N  , 2 1i N   , nt  is the value of a time step, n  is the time step 
number. The time step nt  is chosen from the Courant condition

 
min

max

n
in i

n

z ii

S
t k

u


  , where n

iS  is the length of the i-th element on the free surface, 

k  is the coefficient determined by the computing experiment (k = 0.1 for presented 
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results). The h  value on the symmetry axis was determined from the symmetry 
condition 0dh r  . The convergence was considered to be reached when the 

change of the (0, )h t  value was smaller than 10-6. The difference scheme (20) is 

an explicit difference scheme with the differences against the flow, it provides a 
stable computation of the stationary advancing front shape under the condition that 
such a surface exists for the given value of the Stokes number. This statement 
definitely holds for St 0 , when the gravity is absent or it acts against the flow. 
The steady shapes of the free surface corresponding to this case and for St>0  are 
given in figure 3, where the origin of the coordinate z  lies on the level of the 
contact line position. The dependence of the steady value of    0, 1,h h t h t    

on the parameter St  is shown in figure 4. Flow fields are presented in figure 5. 
Velocity magnitude u  and stream lines are obtained in the coordinate system 

moving with the flow rate. The calculations were carried out at 200N   (50 
elements on the free surface) and ( ,0) 2h r  . The choice of the last value is caused 

by the fact that at such distance of the free surface from the inlet boundary its 
influence on the flow within the inlet vicinity should be excluded. 
 
 

 

Figure 3: Stationary advancing front shapes and the comparison with Mitsoulis 
[17]. 
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Figure 4: Steady value of  0, (1, )h h t h t    versus St  and the comparison 

with Mitsoulis [17] for St≤–4 (a) and St≥–4 (b). 

 

 

Figure 5: Flow fields at St = 0: velocity magnitude u  and stream lines, 

pressure p and the deformation rate intensity 2  E E  . 

     The comparison of the obtained results with the data of Mitsoulis [17] shows 

their good agreement for St 0  (figure 4). In [17] the problem was solved by the 
finite element method (FEM) for 40 St 0.87   , the main efforts were connected 
with carrying out a polar finite element mesh. These problems are omitted while 
applying the boundary element method and we can compute variants when the 
surfaces have practically horizontal shapes (at St< 100 ). 
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     The results for St>0  case, when the gravity force aids the flow somewhat differ 
from those of Mitsoulis [17] (figure 4(b)). The critical value of the parameter St 
which limits the range of existence of the stationary advancing front shapes is 
exactly equal to 0.94. The value St=0.87  was obtained by Mitsoulis [17] and the 
impossibility of obtaining the stationary shapes at larger St was associated with 
the loss of stability. In fact, as it was shown in [18] this event testifies in favor of 
the transfer to the filling regime with the jet formation and the gas entrainments. 
The fountain flow is replaced by a jet one. The numerical study in [18] was carried 
out by the finite-difference method for the planar channel using the kinematic 
condition in the Lagrangian form, and the obtained critical value of St was also 
close to 1. 

6 Conclusions 

On the basis of this investigation one can come to the conclusion that the presented 
version of the indirect boundary element method is an effective means to simulate 
the axisymmetric Stokes flows with a free surface. For its formulation the 
expressions for the components of the fundamental tensors are obtained for the 
velocities and tractions in the cylindrical coordinate system. The principal idea is 
to use the constant elements, the analytical expressions for the integrals of the 
fundamental tensors components with respect to the angle coordinate and the 
approximate analytical values of the integrals of velocity fundamental tensor 
components with respect to the singular elements. To compute numerically the 
extra-diagonal matrix elements of the system it is sufficient to use the eight-point 
Gauss quadratures. This is supported by comparing the numerical solution with 
the exact one (Poiseuille flow) and the numerical simulation of the fountain flow. 
The second problem may be considered as a benchmark for the verification of the 
methods of a free surface flow modeling. The results presented cover a wide range 
of Stokes parameter values. It is shown that the regime of a complete filling of a 
tube when there exist the stationary advancing front shapes is observed under the 
condition St 0.94 . In either case at St>0.94  the fountain behavior of the flow is 
replaced by the jet one. All the computed shapes are in a good agreement with the 
known results. 
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