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Abstract 

In this paper we present the derivation of the governing equations and boundary 
conditions for thin elastic plates with functionally graded Young’s modulus and 
thickness of the plate. The derivation is based on the assumptions of the Kirchhoff-
Love theory for bending of thin elastic plates. The combination of the transversal 
gradation of Young’s modulus with in-plane gradations of Young’s modulus 
and/or thickness of the plate yields the multiple gradations coupling effects. The 
main manifestation of these effects is a finite deflection of the plate even if it is 
subjected only to in-plane loading on the boundary edge. Of course the response 
of the plate is affected by coupling between the in-plane deformation and bending 
modes. In numerical simulations of the multiple gradations coupling effects, the 
meshless strong formulation with MLS (Moving Least Squares) approximation of 
field variables are employed for solution of formulated boundary value problems. 
Several numerical results are presented for illustration of the multiple gradations 
coupling effects in bending of thin elastic FGM (Functionally Graded Material) 
plates. 
Keywords: Kirchhoff-Love theory, functional gradations of Young’s modulus, 
variable thickness, transversal and in-plane gradations, strong formulation, MLS 
approximations. 

1 Introduction 

Plates are initially flat structural elements whose thickness is significantly smaller 
than the other dimensions. Because of small aspect ratio of thickness to in-plane 
dimensions, we can make certain assumptions on the deformation of plates. 
Having known the dependence of the stress-deformation state on the transversal 
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coordinate, one can develop semi-integral formulation for bending of elastic plates 
by performing the integration across the thickness of the plate. Thus, the original 
3D problem is recast into a 2D problem formulated for integral quantities with 
utilizing the integral characteristic such the bending stiffness. As long as the 
material is homogeneous, the bending and in-plane deformation modes are 
uncoupled and the boundary value problem for each of them can be solved 
separately. 
     It is known that functional gradation of material coefficients [1] can improve 
certain properties of structural elements. Thus, for instance, the bending stiffness 
of the plate is affected by the functional gradation of Young’s modulus across the 
plate thickness. The bending stiffness is influenced also by variable thickness of 
the plate. But the change of the bending stiffness is not the only modification 
required to obtain correct behaviour of the FGM (Functionally Graded Material) 
plate as compared with the homogeneous one. The transversal gradation of 
Young’s modulus yields coupling between the bending and in-plane deformation 
modes [2, 3]. Therefore it is insufficient to change only the coefficients in the 
governing equations corresponding to homogeneous plate, but it is necessary to 
modify also the set of governing equations, in order to get the response of the FGM 
plate to applied loading. In this paper, we concise to the Kirchhoff-Love theory of 
bending of thin elastic plates (KLT). The correctly derived governing equations 
for FGM plates with variable plate thickness reveal also the other coupling effects, 
so called multiple gradations coupling effects, arising in the FGM plate with 
transversal gradation of Young’s modulus and an additional in-plane gradation of 
at least one among the Young modulus and the plate thickness. In this paper, there 
are specified also the necessary conditions when an in-plane loading on the 
boundary edge of the plate results into finite deflections of the plate. Note that the 
governing equations involve several coupling terms which are proportional to 
various orders of derivatives of the field variables, Young’s modulus and the plate 
thickness. Therefore it is difficult to assess even the order of the response to 
external loading and a numerical analysis is required. For the numerical solution 
of boundary value problems formulated in this paper, we propose to use the 
meshless strong formulation with MLS-approximation of field variables. Finally, 
we present several numerical results for illustration of the response of the FGM 
plate with variable thickness to external in-plane tension load on the plate 
boundary edge. 

2 Governing equations: derivation of coupling effects 

Let us consider a straight plate structure occupying the 3D domain  

3
1 2 3 1 2 3{ ( , , ) ; ( , ) , [ / 2, / 2]}V x x x x x x h hx= " Î = ÎW Î -  

[ / 2, / 2]h h= W´ - . 

     In the KLT, we assume the linear expansion of the in-plane displacements with 
respect to the transversal coordinate 3x  and the transversal displacement ( )w x  is 

assumed to be independent on 3x , i.e.: 
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 3 3 ,3 3( , ) ( ) ( ,0) ( )i i iv x u x v w    x x x x , {1,2}  ,               (1) 

with ( )u x  being the in-plane displacements in the mid-plane. 

     It can be seen that the shear strains are independent on the transversal 
coordinate 

   3 3 ,3 3 3, 3 ,3 ,( , ) ( , ) ( , ) 2 ( ,0) ( ) / 2/ we x v x v x v      x x x x x .     (2) 

Then, the requirement of vanishing shear stresses on the top and bottom of the 
plate yields 

,3 ,( ,0) ( )wv  x x .                                           (3) 

Hence and from (1), we obtain 

 3 3 ,3 3( , ) ( ) ( ) ( )i i iv x u x w w   x x x x ,                            (4) 

and the strains are given by 

3 3 ,( , ) ( ) ( )e x x w   x x x ,  , ,( ) : ( ) ( ) / 2u u      x x x ,        (5) 

3 33( ) ( ) 0  x x , 3 , 3 ,( , ) ( ) ( )kke x u x w   x x x . 

     Thus, the shear strains are vanishing not only on the top and bottom of the plate, 
but everywhere in the plate. This is the main handicap of the KLT. Nevertheless, 
the KLT works well in case of thin elastic plates. 
     According to the Hooke’s law, the stress tensor components can be written as 

 ( ) ( )
3 32

1
( , ) ( ) ( )

1

u wE
x x

H
  


  




 


x x x , 3 3( , ) 0x x ,        (6) 

 33 3 32 , ,
1

( , ) ( ) ( )
1

E
x x

H
u w  







 


x x x , 

with ( )
,( ) : ( ) ( )u H u      x x x , ( )

, ,( ) : ( ) ( )w Hw w    x x x , 

1H   for plane stress problems, while 1 2H   otherwise. 
     Thus, having known the transversal dependence, the plate bending problem can 
be analysed as a 2D problem. The governing equations for the field variables 

( )u x  and ( )w x can be derived in the semi-integral formulation from the 

variational principle 
/ 2

3
/ 2

0
ij ij

h
e dx d q wd

h
h t u d    


    
  

 
     

 
,             (7) 

where q  is surface density of the transversal load and ( )t x  is the in-plane load 

applied on the boundary edge of the plate. Performing the integration across the 
plate thickness explicitly, we receive 

  ,, M qT u w d      


  

 )( 0ht
w

n T u n n M V w d w T        


    


  
    n

,  (8) 
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where 

/2

3 3
/2

( ) : ( , )
h

h

T x dx 


 x x , 
/2

3 3 3
/2

( ) : ( , )
h

h

M x x dx 


 x x ,       (9) 

:T t n M   , ,:
T

V n M  


 
t

,   : ( 0) ( 0)c cT T T   x x . 

     In view of (8), the governing equations in the semi-integral formulation are 
given as 

, 0T   ,                                                  (10) 

,M q   ,                                               (11) 

and the boundary conditions should obey the following restriction equations at 
each boundary point 

( ) 0n T ht u   


  , 

0
w

n n M   





   
 n

,  ( 0)c

c
V wT 



  
 

 
 

x x .       (12) 

     It is appropriate to use dimensionless formulation specified as follows 
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 
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12(1 )

E h
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
, 

4

0 0

:
L

q q
D h

  . 

     Let us consider a plate with continuously variable thickness 0( ( )h h hx) x

and the Young modulus 

3 0( , ) ( ) ( )H VE x E E E z x x ,                                    (13) 

with assuming the power-law gradation over the thickness of the plate 

1
( ) 1

2

p

VE z z    
 
 

, 3:
x

h
z  .                              (14) 

     Then, the integrations with respect to 3x in (9) can be expressed in terms of 

integrals 

 
1/2

(0) ( )
1/2

k
V k p kz E z dz d d


                                 (15) 

which are given in closed form as 
1/2

(0) 1
1/2

1 ( 1)
:

( 1)2

k
k

k k
d z dz

k 


 
 


,                                 (16) 
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1/2 1
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1 1
: ( 1)
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      
   
   
   

 

0

1 1
( 1)
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  
  

    
. 

     Now, we may write 
2

( ) ( ) ( ) ( )

0

( ) ( ) ( ) ( ) ( ) ( )uu u uw wL
T T C C

D
        x x x x x x

             (17) 
2

( ) ( ) ( ) ( )

0 0

( ) ( ) ( ) ( )wu u ww wL
M M C C

D h
        x x x x  

where the superscript (*) is omitted in Cartesian coordinates and we have used the 
notations 

 ( ) ( )
, , ,

0

: ( ) ( ) ( )
2

u uH L
u u u

h
               x x x ,            

(18) 2
( ) 2 ( )
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0

: ( ) ( )w wL
Hw w

h
         x x  

 ( )
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1
( ) : 12 1 ( )uu

p H
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C d D
H h


 
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(19) 

( ) ( )0
( )1 2

1
( ) : 12 ( ) ( )uw wu

p H
h

C d D C
H L


 

   x x x ,

( )
(0)2 ( )2 3

1
( ) : 12 ( )ww

p HC d d D
H


 

    x x , 

 ( ) : ( ) ( )
j

jH HD h E  x x x . 

     Now, in view of equations (17)–(19), the governing equations become 

   
0

( )0 1 , , , ,1
2

p H
L

h

H
d D u u u                

   
 

1 ,
1

( 2 )
2

HD Hs H u          
 

 ( )1 2 , , 2 ,( ) 0p H Hd D Hw m D H m                ,          (20) 

( )1 2 , , ,
0

p H
L

d D Hu u
h

          
   

2 , , 2 ,( 2 ) ( )H HD Hs H u D H s                   
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(0)2 ( )2 3 , , 3 , ,2 ( )p H Hd d D Hw m D H m                      

3 ,( )
12(1 )

H
H

D H m q


     


,                            
(21)

 

2 0w m    ,                                              (22) 
2 0u s 

    ,                                              (23) 

where the introduction of new field variables m  and s
  by equations (22) and 

(23) decreases the order of derivatives by decomposing the original PDE into the 
set of the 2nd order PDE given by equations (20)–(23). Such decomposition is 
necessary in order to avoid inaccuracy of numerical evaluation of higher than 2nd 
order derivatives of field variables. 

   1

, , ,:
j j

jH H HD j h h E h E  
        

   2 1

, , , ,: ( 1)
j j

jH HD j j h h h j h h E   
           

  
 

   1

, , , , ,

j j

H H Hj h h E h E h E    
         
  , 

we can see that at least one of the quantities { ( ), ( )}Hh E x x is to be graded in   

additionally to the transversal gradation of the Young modulus in order to satisfy 
the necessary conditions (ii) and/or (iii) for creation of finite deflection response 
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     If the Young modulus is not graded across the plate thickness ( 0  ), the 
system of the governing equations (20)–(23) is splitting into two subsystems 
which can be solved separately for in-plane displacements and the deflection. 
Furthermore, if 0  , the finite deflections are a source for in-plane 
displacements even if 2HD const  , i.e. if both the plate thickness and Young’s 
modulus factor ( )HE x are constant in  . On the other hand, finite values of in-

plane displacements can be insufficient for creation of deflections in FGM plate 
with transversal gradation of Young’s modulus and without transversal loading. 
In such a case, finite deflections can be created if at least one of the following 
conditions is satisfied: (i) transversal gradation of Young’s modulus 0   
strongly non-linear distribution of in-plane displacements 2

,( ) 0u 
  ; 

(ii) transversal gradation of Young’s modulus 0   in-plane gradation 

2 , 0HD 
   non-linear distribution of in-plane displacements , 0u 

  ; 

(iii) transversal gradation of Young’s modulus 0   in-plane gradation 

2 , 0HD 
   linear distribution of in-plane displacements , 0u 

  . Bearing in 

mind the expressions 

to in-plane deformations of the FGM plate. Then, we are talking about the multiple 
gradations coupling effects. 



     The set of the governing equations (20)–(23) should be supplemented by 
boundary condition on the plate edge. For in-plane deformations, we have two 
kinds of boundary conditions: (i) essential conditions: ( ) ( )u u x x  on u ; 
(ii) natural conditions: n T ht   on t , which can be combined with the 

three kinds of the “plate bending” boundary conditions: (a) clamped edge: 

 ( ) 0, / ( ) 0w w n   x x ; (b) simply supported edge: ( ) 0,w x

( ) 0n Mn   x ; (c) free edge: ( ) 0n Mn   x ,  ( ( 0) )c

c
V T  x x x . 

3 Numerical implementation 

For numerical solution of boundary value problems in this paper, we employ the 
strong formulation with meshless approximation of field variables by Moving 
Least Square (MLS) approximation [4]. The nodal points are freely distributed in 
the analysed domain and on its boundary without creating any connectivity among 
the nodes. The approximations of in-plane displacements as well as deflections at 
a point are expressed in terms of nodal unknowns and shape functions 
corresponding to certain nodes selected according to chosen weight functions. In 
the standard differentiation approach, the derivatives of field variables are 
approximated in terms of the same nodal unknowns as primary fields and the 
derivatives of the shape functions [5]. The order of the derivatives can be reduced 
in the modified differentiation approach [6], when even the derivatives of filed 
variables are approximated by using the shape functions and the nodal unknowns 
are expressed in terms of the 1st order derivatives of the shape functions at nodal 
points. For more details, we refer the reader to the works [5, 6]. 

4 Numerical examples 

In order to illustrate the multiple gradations coupling effects, we shall consider the 
FGM square plate (Figure 1) with the transversal power-law gradation of Young’s 
modulus by (14) and possible in-plane power-law gradations of the plate thickness 
and the Young modulus factor ( )HE x . 

 

Figure 1: Sketch of the plate. 

1( ) 1 ( )HE x   x , 1( ) 1 (1 )HE x    x  

1( ) 1 ( )sh x  x , 1( ) 1 ( )sh x  x  
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     The following boundary conditions are assumed: 
 clamped boundary edge (for the bending mode) 

0w


 , 0

w






n
, 0q


  

 uniform tension 1i it   is applied on the edge 1 1x  ; 1 0u  on the edge 

1 0x  , while the rest of the boundary   is traction free (for in-plane 

deformation mode), i.e. 
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   
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   
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0
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2
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d D u u



  
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0
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1 Hp
L H

D u u u
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d              
   

 

  
2
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where we used certain simplifications on the clamped edges 1 1x  or 1 0x  : 

0w const    and ,1 0w const      ,2 0w  , ,22 0w  , ,12 0w  , 

,11m w  , 

while on the clamped edges 2 1x  or 2 0x  : 

0w const    and ,2 0w const       ,1 0w  , ,11 0w  , ,21 0w  , 

,22m w  . 

     In numerical calculations, we have utilized uniform distribution of 26 26  
nodes (with   being the distance between two neighbour nodes), cubic 
polynomial basis, Gaussian weights with the radius of support domain 3.001 
and shape parameter c  . 
     When we considered only the transversal gradation of the Young modulus 
(YM), the in-plane displacements were influenced by the level of gradation (see 

Figure 2), but there was no response in deflections ( 11
10~w  ). 
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Figure 2: The response in homogeneous and two FGM plates with transversal 
gradations of YM. 

     If the transversal gradation of YM is combined with variable thickness of the 
plate and/or in-plane gradation of YM, the multiple gradations coupling effects 
take place and finite deflections are created even by in-plane loading. The response 
of in-plane displacements become non-linear (Figure 3). In this case, the in-plane 
gradation of Young’s modulus is increasing from the fixed edge toward the loaded 
edge and the plate thickness is constant. 
     Finally, we present the response in the FGM plates with combined transversal 
gradation of YM and in-plane gradations of the plate thickness increasing from the 
fixed edge toward the loaded one. It can be seen from Figures 3 and 4 that the 
coupling is more expressive in the latter case, though the responses for 1u  

displacements are very similar in both cases. 

5 Conclusions 

The multiple gradations coupling effects are described within the Kirchhoff-Love 
theory for bending of thin elastic plates. These effects arise in the FGM plate with 
transversal gradation of Young’s modulus and an additional in-plane gradation of 
at least one among the Young modulus and the plate thickness. The 2D 
formulation, i.e. the governing equations and boundary conditions, are derived for  
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Figure 3: The response in homogeneous and FGM plates with combined 
transversal gradation of YM and in-plane gradations of YM 
increasing from the fixed edge toward the loaded edge. The results are 
plotted along the line 1 2( , 0.5)x x  . 
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Figure 4: The response in homogeneous and FGM plates with combined 
transversal gradation of YM and in-plane gradations of YM or plate 
thickness increasing from the loaded edge toward the fixed edge. The 
results are plotted along the line 1 2( , 0.5)x x  . 
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coupled bending and in-plane deformation modes starting from the 3D variational 
formulation for FGM plates with variable thickness and with applying the 
Kirchhoff-Love assumptions. Analysing the derived governing PDE with variable 
coefficients, we have specified the necessary conditions for creation of finite 
deflections in FGM plates subjected to in-plane traction load on the boundary 
edge. The numerical simulations for some illustrative examples document creation 
of finite deflections of the plate as well as the influence of multiple gradations 
(including coupling between bending and in-plane deformation modes) on the in-
plane displacements. 
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