
On the boundary element formulation to 
compute critical loads considering the effect 
of shear deformation in plate bending 

L. Palermo Jr. & R. A. Soares Jr. 
School of Civil Engineering, Architecture and Urban Design, 
State University of Campinas, Brazil 

Abstract 

A boundary element formulation to compute critical loads in static problems is 
analyzed. The bending model includes the effect of shear deformation that turns 
deflection derivatives independent of plate rotations. The effect of geometrical 
non-linearity (GNL) related to in-plane loading is introduced with two additional 
integrals in the formulation: one is performed on the domain and the other on the 
boundary. The boundary integral can be related to one of the natural conditions 
according to the boundary value problem. The inverse iteration was used to get 
the lowest eigenvalue. Results obtained with several boundary conditions 
and using derivatives of the deflection in the effect of GNL are compared and 
discussed with expect values from the literature. 
Keywords: plate bending with in-plane forces, critical loads of plates, Reissner-
Mindlin plates. 

1 Introduction 

A formulation to compute critical loads in plates is studied with the boundary 
element method (BEM). The effect of shear deformation is included in the 
bending model due to its benefits on plate behavior modeling as shown 
by Reissner on the assessment of stress concentration around holes [1] and by 
Mindlin on the wave propagation analysis considering short wavelengths [2]. 
The effect of the geometrical of non-linearity (GNL) related to in-plane loading 
is introduced according to the development in [3]. In spite of the fact that 
classical plate theory has been used in [3], the formulation for the effect of GNL 
is considered in bending models including the effect of shear deformation when 
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thin or thin to thick plate types are analyzed (as shown in several studies in the 
literature). 
     A review on the literature until 1989 on the buckling of thin rectangular plates 
was done by Jones in [4]. Dawe and Roufaeil [5] discussed the effect of GNL in 
plate bending considering the effect of shear deformation since the first study 
presented by Herrmann and Armenakas [6]. Doong [7] and Matsunaga [8] 
studied vibration and buckling of thick plates employing a high order 
deformation theory for the bending model. The buckling analyses of skew plates 
considering the Mindlin model was done by Kitipornchai et al. [9] with pb-2 
Rayleigh-Ritz method. Lei et al. [10] formulated an integral equation for 
buckling analysis of Reissner plates, where the domain integral related to GNL 
was discretized using constant triangular cells. A similar study was done by 
Purbolaksono and Aliabadi [11] but using constant rectangular cells. 
     A boundary element formulation using first derivatives of the deflection to 
introduce the effect of GNL in bending of plates was presented in [12, 13]. The 
elastodynamic solution [14] was used and critical loads were computed 
according to the frequency value. It is well known that the frequency value 
modifies the value of critical in-plane force and vice-versa [15]. The values 
obtained for critical loads at near zero frequencies were close to expected 
values from the literature for the static condition. A question appeared: Was the 
numerical implementation or the near zero value for the frequency that improved 
the formulation to compute critical loads at “the static condition”? 
     An analysis of the formulation using first derivatives of the deflection in the 
effect of GNL is done in this study. The static fundamental solution [16] is used 
to remove the dynamic effect whereas other features in [12, 13] remained. The 
effect of geometrical non-linearity (GNL) is introduced with two additional 
integrals in the formulation: one is performed on the domain and the other on the 
boundary. The boundary integral can be related to one of the natural conditions 
according to the boundary value problem. Isoparametric quadratic boundary 
elements and constant rectangular domain cells are employed. The inverse 
iteration and Rayleigh quotient are used to get the lowest eigenvalue. Results 
obtained with several boundary conditions are compared and discussed with 
expect values from the literature. 

2 Boundary integral equations 

The constitutive equations for an isotropic and homogeneous plate material are: 
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The plate has a uniform thickness h, D is the flexural rigidity,  is the Poisson 
ratio, w is the deflection, α is the plate rotation in the direction α and δαβ is the 
Kronecker delta. The product qRE in equation (1) corresponds to the linearly 
weighted average effect of the normal stress component in the thickness 
direction and should be considered in Reissner’s model [1] but not in Mindlin’s 
model [2], in which it should be considered to be null. The shear parameter 2 is 
equal to 5/6 and 2/12 for the Reissner and Mindlin models, respectively. 
     The constitutive eqns (1) and (2) employed a unified notation for the Reissner 
and the Mindlin model and the convention of this study was used, i.e. Latin 
indices take values {1, 2 and 3} and Greek indices take values {1, 2}. To match 
the constitutive equations used in the literature for other numerical techniques [8, 
9], the linearly weighted average effect of the normal stress component in the 
thickness direction (qRE) is assumed null in this study and the difference 
between Reissner and Mindlin models will be done by the shear parameter. 
     The natural conditions and the equilibrium equations for the problem can be 
obtained with the calculus of variations [17, 18]. The energy functional of the 
plate is given by: 
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      The energy functional of the plate was written in the complete form in eqn (3) 
and is similar to that presented in [9]. The first integral (domain integral) is the 
strain energy whereas the effect of GNL appeared in the last integral. The second 
and the third integral are the potential energy of the external loads distributed on 
the domain and on a portion of the boundary line (f). The out of plane loads on 
are q and P whereas EM1, EM2 are couples in directions 1, 2, respectively. The 
displacements w, 1, 2 are not prescribed on the portion of the boundary line f. 
The energy functional of the plate can be written in a general function to be 
minimized with the calculus of variations: 
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     The Euler equations obtained from the minimization of eqn (4) is given by: 
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     The equilibrium equations are obtained when the constitutive eqns (1) and (2) 
are introduced in resultant expressions from the application of Euler equations: 
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     The natural conditions introduce requirements on the boundary portion (f) 
with not prescribed displacements where the variations of displacements are not 
null (w ≠ 0, α ≠ 0): 
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Equations (1) and (2) were used to obtain tα (tα= M.n) and t3 (t3= Q.n), 
respectively, in natural conditions. 
     The general form of displacement boundary integral equations (DBIEs) with 
an additional domain integral containing the effect of GNL is next written with 
the notation proposed by Weeën: 
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Cij is an element of the matrix C related to the boundary at the source point, 
which becomes the identity matrix when a smooth boundary is considered. u is 
, u3 is w. Uij represents the rotation (j=1, 2) or the deflection (j=3) due to a unit 
couple (i=1, 2) or a unit point force (i=3), respectively, Tij represents the moment 
(j=1, 2) or the shear (j=3) due to a unit couple (i=1, 2) or a unit point force (i=3), 
respectively. 
     It is well known in plate analyses that the natural condition is introduced for 
each generalized force ti corresponding to the displacement not prescribed. 
According to eqn (7) the effect of GNL should be introduced as “an out-plane 
force” when the deflection is not prescribed (or, free) on the boundary portion [3, 
19]. 
     The term related to the effect of GNL in eqns (6) or (9) can be simplified with 
the equilibrium equations for in-plane forces (Nαβ,α= 0). The second derivatives 
of the deflection appear as result from the simplification, as shown in several 
studies in the literature. The equilibrium equations for in-plane forces were not 
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used here but an algebraic manipulation with the divergence theorem was done 
in the domain integral related to GNL in eqn. (6), i.e.: 
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     The algebraic manipulation carried to use first derivatives of the deflection, 
only, when the effect of GNL is considered. The final DBIE is given by: 
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     The boundary integral containing the effect of GNL can be related to the 
natural condition given by eqn (7) when the boundary portion has the deflection 
(w or u3) not prescribed. It can be shown by assuming the boundary  split into 
two portions: p and f where displacements are known (prescribed) and 
unknown (not prescribed or free), respectively. 
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     The left hand side of eqn (11) contains the unknowns i.e. displacements on f 
and forces on p. The external loads on the boundary portion f were introduced 
in the right hand side according to natural conditions shown in eqns (7) and (8). 
A simplification can be done on the boundary portion f due to opposite signals 
in the natural condition and in the boundary integral with the effect with GNL. 
The boundary integral with the effect of GNL computed only on the boundary 
portion with prescribed displacements (p) is the result from the simplification. 
     The BIE for the first derivative of the deflection in the direction  at an 
internal point is obtained by differentiating the DBIE given by eqn (10) with 
respect to the coordinate of the source point (X’). The result is next written in 
terms of differentiation of coordinates of the field point and with direction 
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cosines of the outward normal at the field point written off the differential 
operator [20]: 
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3 Numerical implementation 

There were employed quadratic shape functions for isoparametric boundary 
elements with collocation points always placed on the boundary. The same 
mapping function was used for conformal and non-conformal interpolations, i.e. 
nodes at ends of quadratic elements remain at ends when discontinuous elements 
were employed. The collocation points were placed at nodes in case of 
continuous elements and at positions (-0.67, 0.0, +0.67), in the range (-1, 1), in 
case of discontinuous elements, i.e. the collocation points were shifted to inside 
the element at the corresponding end where the discontinuity exists. The 
singularity subtraction [21] and the transformation of variable technique [22] 
were employed for the Cauchy and the weak type singularity, respectively, when 
integrations were performed on elements containing the collocation points. The 
standard Gauss–Legendre scheme was employed for integrations on elements 
(or, side of the cell) not containing the collocation points. Rectangular cells were 
used to discretize the domain integral related to the geometrical non-linearity 
effect. The derivatives of the deflection at the center of the cell were assumed 
constant on the cell. This assumption allowed to use the divergence theorem to 
convert the domain integral in equivalent boundary integral performed on sides 
of the cell. This strategy carried to a simplification on the use of integrals 
containing the effect of GNL because they have opposite signals, i.e.:  
a) When the deflection is prescribed on the whole boundary (like a simply 

supported plate from all sides): The effect of GNL is computed from 
integrations performed only on sides of cells inside the domain but not on 
sides on the boundary of the plate; 

b) When the deflection is not prescribed on the boundary portion of the plate 
(f): The effect of GNL is computed from integrations performed on sides of 
cells inside the domain and on sides of cells on the boundary portion f. 

     The basic inverse iteration and the Rayleigh quotient were used to perform 
the eigenvalue analysis. [23], i.e.: 
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     The basic inverse iteration procedure is very efficient to compute the lowest 
eigenvalue with corresponding eigenvector [23]. Equation (12) was not used 
explicitly, but starting with an eigenvector x1 with all elements equal to 1.0, 
values for displacements and tractions at nodes of boundary elements were 
found. These values were introduced in the discretized form of equation (11), i.e. 
the equation written in terms of matrices, to obtain the eigenvector x2 and the 
lowest eigenvalue at the first iteration step was obtained by using equation (13). 
The iteration procedure continued until the absolute difference between values of 
successive eigenvalues was less than 10-5. The proof of the convergence for the 
lowest eigenvalue can be found in [23]. 
     The Young modulus (E) was 206.9 GPa, the Poisson ration () was 0.3 and 
the shear parameter was 2/12 (Mindin). The buckling parameter k is obtained 
according to the boundary conditions: S=simply supported edge, C=clamped 
edge and F= free edge. 
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The critical in-plane load is Ncr  and the length of the plate side is a. 
 

Table 1:  Buckling parameter (k) of the first critical in-plane load. 

Type h/L [24] [25] 64 cells 100 cells 
SSSS 0.001 4.0000 4.0478 4.0503 4.0325 

 0.050 3.9280 3.9879 3.9928 3.9753 
 0.100 3.7290 3.8227 3.8291 3.8129 
 0.200 3.1190 3.2850 3.2887 3.2770 

SSSC 0.001 4.8470 4.9235 4.9392 4.9069 
 0.050 4.7170 4.8161 4.8343 4.8028 
 0.100 4.3720 4.5248 4.5447 4.5166 
 0.200 3.4180 3.6467 3.6640 3.6452 

CSSS 0.001 5.7400 5.8310 5.8167 5.7897 
 0.050 5.5740 5.6878 5.6710 5.6451 
 0.100 5.1400 5.3116 5.2813 5.2585 
 0.200 3.8760 4.1930 4.1852 4.1711 

SCSC 0.001 6.7430 6.8910 6.9490 6.8776 
 0.050 6.4620 6.6597 6.7181 6.6506 
 0.100 5.7650 6.0566 6.1133 6.0559 
 0.200 4.1090 4.4540 4.4977 4.4637 

CSCS 0.001 7.6910 7.9673 7.9306 7.8484 
 0.050 7.2280 7.5346 7.5166 7.4416 
 0.100 6.1780 6.5342 6.5381 6.4800 
 0.200 4.0560 4.4696 4.3990 4.3718 
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     The Spline Strip Method was used in [24] and the boundary element method 
in [25]. The term related to the effect of GNL was simplified in [25] with 
equilibrium equations for in-plane forces (Nαβ,α=0) and second derivatives of the 
deflection appeared as result from the simplification. The meshes used in [25] 
were: 40 isoparametric linear boundary elements with 100 constant cells for 
results in Table 1 and 80 isoparametric linear boundary elements with 400 
constant cells for Table 2. Results in Tables 1 and 2 were obtained with: 64 
quadratic boundary elements (132 nodes) with 64 constant cells and 80 quadratic 
boundary elements (164 nodes) with 100 constant cells 
 

Table 2:  Buckling parameter (k) of the first critical load. 

Type h/L [24] [25] 64 cells 
FSSS 0.001 1.4020  1.4135 

 0.010 1.4000  1.4137 
 0.050 1.3780 1.3336 1.3958 
 0.100 1.3270 1.3003 1.3546 
 0.200 1.1730 1.1785 1.2260 

FSCS 0.001 1.6520  1.6685 
 0.010 1.6500  1.6681 
 0.050 1.6200 1.5628 1.6383 
 0.100 1.5560 1.5074 1.5739 
 0.200 1.3700 1.3321 1.3852 

FSFS 0.001 0.9523  0.9586 
 0.010 0.9516  0.9586 
 0.050 0.9412 0.9007 0.9499 
 0.100 0.9146 0.8836 0.9287 
 0.200 0.8274 0.8151 0.8562 

 

Table 3:  Buckling parameter (k) of the first critical load for a simply 
supported SSSS plate. 

BE Cells [11] Obtained DRM Points 
20 5x5 4.241 4.122 4.189 25 
24 6x6 4.173 4.085 4.141 36 
28 7x7 4.143 4.063 4.060 49 
32 8x8 4.079 4.048 4.032 64 
36 9x9 4.068 4.038 3.985 81 
40 10x10 4.041 4.030 3.999 100 

 
     Tables 1 and 2 show the results obtained with the present formulation were 
better than those obtained with the use of second derivatives of the deflection to 
introduce the effect of GNL [25] and close to those obtained by Mizusawa [24]. 
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Furthermore, the numbers of cells were lower using the present formulation than 
those used in [25]. 
     Table 3 shows a comparison between results obtained with the present 
formulation and those presented by Purbolaksono and Aliabadi [11]. There were 
used constant rectangular cells to discretize the domain and the Dual Reciprocity 
Method in [11]. The expected value for k was 4.000 according to [11] but no 
information was included on values for thickness or mechanical constants (E, ν) 
or length of the side of the plate. The number of boundary elements (BE) and the 
number of cells (Cells) used in [11] were adopted to check results with the 
present formulation. The numbers of points used for the DRM in [11] were the 
same used for cells and they were not repeated in Table 3. Instability on values 
for the DRM can be noted when 81 and 100 points were used when the results 
were lower than the expected value. 

4 Conclusions 

Results obtained with the use of first derivatives for the deflection to introduce 
the effect of GNL were apparently better than those obtained with second 
derivatives of the deflection. In spite of the reduction on the effort for the 
numerical implementation (use of first derivative, only), the number of domain 
cells was reduced and the convergence was monotonic according to the increase 
of the number of cells. 
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