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Abstract 

For a roll gap of continuous plastic forming, the determination of mechanical 
parameters of a rolling processing involves a multi-body elasto-plastic frictional 
contact problem. As one of the three important numerical analytic methods, the 
Boundary Element Method (BEM) is suitable for the solution of contact 
problems, and it shows superiority to the Finite Element Method (FEM) and 
Finite Difference Method (FDM) in these cases. However, when the contact 
objects become very complicated and large-scale discrete nodes are generated, 
there are inherent difficulties for the BEM, such as time-consuming problem, 
low efficiency, and so on. To solve these problems, a kind of Fast Multi-pole 
Boundary Element Method (FM-BEM) is proposed. Combining the Fast Multi-
pole Method (FMM) with BEM opens up a new computational situation, 
especially when a high efficient solver named Generalized Minimal Residual 
Algorithm (GMRES (m)) is introduced. Then a node-to-surface frictional contact 
model and a programming-iteration algorithm are developed. On a PVM network 
parallel platform, the cold rolling process of 2030 four-high mill with a width-to-
thickness ratio reaching 1850 is successfully simulated. The total freedom is 
18414 and the CPU time is 42 hours and 24 minutes. For this rolling problem, 
both the high precision and the high computational efficiency are impossible for 
other numerical analytic methods. 
Keywords: 3D rolling process, BEM, FMM, GMRES(m), PVM.  
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1 Introduction 

The Fast Multi-pole Method (FMM) originates from a large scale fast 
approximate calculation in the electrostatic field, and it has become one of the 
popular fast computational methods. When the FMM is introduced in 
the Boundary Element Method (BEM) [1], the fundamental kernel solutions are 
decomposed into special forms. Combined with a Generalized Minimal Residual 
(GMRES) [2] algorithm, a kind of Fast Multi-pole Boundary Element Method  
(FM-BEM) is established, which is suitable for the requirement of 3D rolling 
process simulation [3, 4] and other large scale computations. 
     Three models have been used in the study of strip rolling process simulation, 
which includes a 2-D rolling process model, 3D rolling process model and strip-
roll contact process model. The establishment process of the strip-roller contact 
processing model undergoes four stages. Firstly, a model with artificial friction 
force at the contact arc is built. Secondly, the Finite Element Method (FEM) is 
introduced in the friction elements. Thirdly, the Finite Strip Method (FSM) 
is used to build an elastic-plastic process model for the contact of four-high 
mill’s strip, working roll and back-up roll. Finally, artificial assumptions for the 
contact pressure between the rollers are cancelled out, which makes it possible to 
accurately simulate the cold rolling process of a four-high mill. 

2 Mechanical model of the cold strip rolling process 

For the mechanical model of the cold strip rolling process, the information of 
surface force and deformation in the rolling deformation area can be computed 
by the equilibrium equation about the problem of strip elastic-plastic continuous 
molding with rotating rolls (as is shown in Fig. 1). 
 

           
                                        (a)                                                       (b)   

Figure 1: (a) Mechanical model and (b) deformation area of the rolling 
process. 
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     We make the following basic assumptions:  
(1) All materials are homogeneous isotropic and keep invariant in the 

deformation process. 
(2) The strip is elastic-plastic; it complies with Mises yield condition and 

Plandtl-Reass flow rules, and its width and thickness have a uniform size before 
rolling. 

(3) The working roll and back-up roll are elastic bodies.  
(4) In the deformation process, materials satisfy the law of constant volume. 
(5) In the contact surface, the strip and rolls obey Coulomb linear friction law.  

When the friction force exceeds the yield shear limit, it will obey the shear 
friction theory, which is expressed as 

mkF /                                                        (1) 

where F indicates the friction force, k indicates the yield shear limit, and m (a 
positive number less-than-or-equal-to 1) indicates the shear friction coefficient. 

3 Mathematical framework of the FM-BEM 

As commonly used numerical simulation methods, BEM and FEM are used to 
solve many engineering problems by forming a discrete matrix equation. The 
difference is that FEM forms a sparse stiffness coefficient matrix, while BEM 
forms a dense influence coefficient matrix. 

3.1 FMM formula 

Having originated from an electrostatic field, FMM [5–7] is used to compute the 
interactions between each two particles. A large number of particles are divided 
into different sets according to their spatial locations. When the distance between 
two sets is far enough, the interaction can be computed by the series expansion 
method, which can be expressed as: 
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where   and θ are the angle independent variables of the spherical coordinate, 
m

nP  indicates an associated Legendre function, and )(xPn  indicates an n -rank 

Legendre polynomial.   

3.2 GMRES algorithm  

For the solution of N-order discrete system equations, the Gauss elimination 
method or related derivative methods are used in traditional BEM, and the order 
of magnitude is about O(N3). In the FM-BBEM, GMRES algorithm is 
introduced to solve the discrete system equations. Based on the Arnoldi [8, 9] 
algorithm, it is a newly developed iteration algorithm, and the order of 
magnitude is about O(N). Without forming a coefficient matrix, a series 
of recursive vectors are formed, which saves much storage space.  

3.3 FM-BEM expressions  

Suppose that a finite domain is expressed by   and its surface boundary is 
expressed by ,  the boundary with known surface force is written as ,T  the 

boundary with a known displacement is written as ,U  and .U T     For 

elastic problems, the boundary integral equation without body force is expressed 
as follows: 

  
 dytyxUdyuyxTxuc jijjijiij )(),()(),()(                   (4) 

where x  indicates an arbitrary point on the boundary ,  y  indicates a source 

point, ijc  indicates a boundary shape coefficient, and the displacement iu  and 

surface force jt  are solutions. In eq (4), ( , )ijU x y
 
and ( , )ijT x y  are Kelvin [10] 

fundamental solutions of displacement and surface force, respectively, which can 
usually be expressed as follows: 
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where ij , a Kronecker function, is a two-order invariant tensor, R  indicates 

the distance between an observation point and a source point, and n  indicates 
the outer normal vector for the boundary .  The element coordinates are 
expressed as: 
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In eq. (7), the summation term can be fast computed by the FMM. In order to 

make the fundamental solutions suitable for the FMM, ),( yxU ij  and 

),( yxTij  are decomposed into the following expressions.  
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where , , 1,2,3,i j m  i  indicates the partial derivative of ,ix  and 

/ ( ).1 8 1     

     Then eqs (8) and (9) are substituted into eq. (4), and eq. (4) can be discretized 
as follows: 
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3.4 Node-to-surface contact model  

The rolling process usually involves a strip’s plastic flow and a big slip on 
the contact surface. The boundary condition has a nonlinear property. Node-
to-surface contact discriminant model is adopted, which is shown in Fig. 2. 
When two bodies A and B contact with each other, constraint conditions 
without penetration must be satisfied. The contact is discriminated by the 
coordinates of element nodes.  After each incremental step, the position is 
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known.  Suppose that ),,( 000 zyxP  is an arbitrary node on body B, and 

decides whether it contacts with element S  on body A (the coordinates of 
element nodes are ( , , ) , 1 , 2 , 3 , 4,i i i iX x y z i   respectively). For the 

element S  with four nodes, arbitrary three nodes can determine a plane , 
the distance from node P to plane   is d , and the projective point of P  is 

),,( 000 zyxP  .  If d ( is a contact limit, and its default is 1/100 of the 

length of minimal element) and SP  , then node P is determined to contact 
with element S , which means node P is in coincidence with P . As the same 

time, the local coordinate ),( 21  of node P in element S can be computed by 


M

l

l
lXP                                                   (15) 

where l indicates the interpolating function, ),( 21   are independent 

variables, and M  indicates the number of element nodes.              
 

 
                                          (a)                                                         (b)   

Figure 2: Node-to-surface contact model: (a) node-to-surface contact; 
(b) contact without penetration. 

     In each incremental loading step,   can be used to detect whether contact or 
penetration occur. During the interval [ , ],t t t   node P moves from ( )P t  
to ( ).P t t   If ( )P t t   is beyond the contact limit  , then penetration 

occurs and this incremental loading step must be subdivided. The subdivision 

rule is expressed as oldnew t
D

d
t  . 

     Numerical experiments show that the contact limit has a great effect on the 
computational accuracy and efficiency. A small limit is very helpful to 
the accuracy. But if it is too small, it will be very difficult to detect the contact of 
a node and an element, and a slightly larger step will make many nodes be 
treated as penetration. In order to avoid penetration, a smaller incremental load 
step can be selected. Once penetration occurs, the next step will be adjusted.  
     For the two deformation bodies in contact with each other, a bilateral contact 
check is carried out. In proper order, the contact bodies are checked to determine 
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whether the probable contact nodes contact with some elements in other bodies 
and to distinguish possible penetrations. A bilateral contact check can greatly 
improve the computational accuracy, but it will take a lot of computing time and 
cause the increase of data storage.  

3.5 Mathematical programming for friction contact iteration  

Node-to-surface contact constraints show high nonlinearity, which makes the 
solution process very difficult and time-consuming. An effective measure is to 
linearize the nonlinear frictional contact constraints and establish an optimization 
mathematical programming model, which is suitable for large scale fast 
computations. The solution of the elastic-plastic problem is based on an 
incremental method. An appropriate loading step is very important for the 
convergence of computation. Too large a step will result in non-convergence, and 
too small a step will make the solution time very long. Because of the 
irreversibility of friction and plasticity, a step-by-step loading method is adopted 
for the displacement and surface force loads, which can improve the precision of 
solution. The number of loading step and the size of each step should be chosen 
according to the problem types and the load characteristics. Loading strategies 
have decisive influence on the computational accuracy and computational 
efficiency. So an appropriate loading strategy must be presented for the strip 
rolling simulation. The discrete equations are shown as below: 

For the elastic body:                            iiii tGuH                                          (16) 

For the elastic-plastic body:           iiuH  piiiitG                                (17) 

                   piiiiiii QuHtG   '''                        (18) 

where, i is the number of the body; tu , are vector of the incremental 

displacement and surface force; H, , , , ,G H G Q    are the corresponding 

matrix respectively; p,    are stress and plastic stress increment in the plastic 
body. 

3.6 Network parallel computing  

In the rolling process, compared with the total surface of the roller, the contact 
deformation area is very small; only 6%. To obtain the distributions of stress and 
surface force in the contact zone, meshes in the deformation zone must be 
subdivided. However, if the whole body is discretized according to the same 
subdivision criterion for the contact zone, the number of discrete elements will 
be too large. Therefore, in order to reduce the element number, the prolate 
elements with large length-width ratio (the maximum can reach 100) are used 
along the roller length direction. In this paper, an effective network parallel 
algorithm is used. Under PVM platform, parallel computing source programs are 
developed. Computing tasks are allocated to ten computers and computing 
results are collected in special sequence, which significantly improves the 
computational efficiency. 
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4 Simulation results and discussion for 2030 four-high mill 
cold rolling process 

The analysis of cold rolling processing with the strip width-thickness ratio being 
1850 is a multi-body elasto-plastic contact problem with friction. By the FM-
BEM, the computation time is 42 hours and 24 minutes, which is shorter than 
that by the FEM commercial software. 

4.1 Discrete model for 2030 strip mill cold rolling processing 

According to the symmetry of rolling mill and rolling processing, a 1/4 discrete 
model is used, as is shown in Fig. 3. The related computation parameters are 
shown in Table 1. 
 

       
Rollers                                              Strip 

Figure 3: Discrete model. 
 

Table 1:  Rolling parameters. 

Back-up roll Working roll Strip 
Young modulus 
(E/GPa) 

210 
Young modulus 
(E/GPa) 

210 
Young modulus 
(E/GPa) 

206 

Poisson‘s ratio 
(  ) 0.3 Poisson‘s ratio (  ) 0.3 Poisson‘s ratio (  ) 0.3 

Roller radius  
(R/mm) 

750 
Roller radius 
(R/mm) 

300 
Initial strip thickness 
(h0/mm) 

1.25 

Roll body length 
(L/mm) 

2030 
Roll body length 
(L/mm) 

2230 Strip width(b/mm) 1850 

Friction 
coefficient ( )f  0.1 

Friction coefficient 
( )f  0.1 

Friction coefficient 
( )f  0.08 

Contact limit 
(  /mm) 

0.001 
Contact limit 
(  /mm) 

0.002 Contact limit (  /mm) 0.003 

– – – – Yield stress ( s /MPa) 250 

– – – – Stiffness coefficient (H) 0.002 
– – – – Reduction (%) 20 
– – – – Forward pull (T1/N) 2430 
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     The hardening curve of yield stress for the strip material is shown in Fig. 4. 
Forward tension is applied according to the working condition.  
 

 
Figure 4: Hardening curve of the yield stress. 

4.2 Results and discussion  

In the contact deformation zone, the rolling pressure, longitudinal friction and 
transverse friction are shown in Fig. 5. Obvious peak value appears on the edge 
of rolling pressure, which is about 1000~1300Mpa. The total rolling pressure is 
1256 tons.  

    
                               (a)                                            (b)                                   (c)  

Figure 5: Surface force distributions in the contact zone: (a) rolling pressure; 
(b) longitudinal friction stress; (c) transverse friction stress. 

     In the deformation zone, transverse distribution of rolling pressure at the exit 
is shown in Fig. 6(a). The edge peak is especially obvious, which appears about 
60 mm away from the rolled piece. Except the edge effect, the rolling pressure 
gradually reduces from the edge to the center. The reason is that the increasing of 
roll span results in the roll deflection significantly affecting the rolling pressure. 
     The distribution of rolling pressure along the center line of contact arc is 
shown in Fig. 6(b). The contact arc is 9.6 mm by actual measurement. Computed 
by the following equation 

hRl                                                   (19) 

the length of contact zone is 8.66 mm. In eq. (19), R indicates the radius 
of working roll, and h  indicates the rolling reduction. The difference of 
computational and theoretical results explains the roller’s elastic flattening 
phenomenon.  
     The distribution of longitudinal friction along the center line is shown in 
Fig. 6(c), which really represents the existence of forward and backward slip 
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the contact zone and the friction force generated from slips. The transverse 
friction refers to the surface friction along the strip width direction. It violently 
changes at the edge because of the spread of resistance, and keeps gentle in the 
central area, which is consistent with the reality. 
 

               
 (a)                                                                    (b)          

 
 (c)  

Figure 6: Distributions of the rolling force: (a) distribution of rolling pressure 
along the enter line; (b) distribution of longitudinal friction stress 
rolling along the enter line; (c) transverse distribution of rolling 
pressure along the exit. 

     As shown in Fig. 7, distribution of the friction force on the surface of rolled 
piece is given in vector mode. All the friction forces in forward and backward 
slip zones make in the same direction, namely, the neutral surface. Changes of 
friction direction resulting from width extrusion can be seen at the edge of the 
rolled piece.  

 
Figure 7: The surface friction force of rolled piece. 
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     The strip’s metal flow condition in the deformation zone is also obtained. In 
the contact arc, the distribution of horizontal normal stress x along the thickness 

direction is shown in Fig. 8(a), where “+” indicates tensile stress and “-” 
indicates compression stress. The stress distribution is inhomogeneous, which 
shows the inhomogeneous deformation along the thickness direction. Being 
affected by the rigid end, the cross section at the entrance and exit in the 
deformation zone has tension/compression stress applied. Under the condition 
that the ratio of length and average thickness is 10 in the deformation zone, an 
inhomogeneous deformation phenomenon appears along the thickness direction. 
In the deformation zone, the distribution of metal velocity is shown in Fig. 8(b), 
where rV indicates the peripheral speed on the working roll surface, rxV

 
indicates 

the component along its rolling direction, and xV indicates the metal velocity 

along the rolling direction. 
     At the thickness center of the deformation zone exit, the distribution of 
horizontal normal stress x  along the width direction is shown in Fig. 8(c). 

Being affected by the roller’s bending deformation, the distribution of horizontal 
normal stress along the width direction is inhomogeneous and the strip edge is 
pressed, which easily results in wave shape at the edge. 
 

    
                        (a)                                              (b)                                        (c) 

Figure 8: Velocity change in the deformation zone: (a) horizontal normal 
stress; (b) metal flow velocity; (c) horizontal normal stress. 

     The flattening and bending deformation of the working roll will directly 
affect the surface shape of the rolled piece and the stress distribution. The 
thickness distribution along the width direction at the strip exit is shown in 
Fig. 9. The strip shape takes on a thick middle and thin edge, and the thickness 
obviously reduces within about 80 mm away from the edge. The transverse thick 
difference reaches 0.0328 mm, which is about 13% of the absolute reduction. 
 
 

 

Figure 9: Transverse thickness distributions of the rolled piece. 

 
 www.witpress.com, ISSN 1743-355X (on-line) 
WIT Transactions on Modelling and Simulation, Vol 61, © 2015 WIT Press

Boundary Elements and Other Mesh Reduction Methods XXXVIII  207



     In the rolling process, the back-up roll is bent, and the working roll is 
flattened and deformed on the contact surface. Therefore, the profile can be 
controlled by changing the surface shape of the back-up roll. The surface force of 
the back-up roll and working roll in the contact zone is shown in Fig. 10. The 
transverse friction distribution is inhomogeneous. It is big at the edge and small 
in the middle, which shows the bending action of the back-up roll. The slip 
tendency at the edge is bigger than that in the middle. The whole contact zone is 
in the adhesive state, and no slip occurs. The length of contact arc between the 
back-up roll and working roll is 6.4 mm. The pressure distribution in the contact 
zone is basically symmetrical. 
 

   
                       (a)                                                (b)                                       (c) 

Figure 10: Contact surface force of the back-up roll and working roll: 
(a) contact pressure; (b) longitudinal friction; (c) transverse friction. 

                
                                     (a)                                                                 (b)                                

Figure 11: (a) Bending deflection and (b) friction force vector on the contact 
surface. 

     The distribution of longitudinal friction is similar to that of the contact 
pressure, the direction is consistent with the rotation direction of the back-up 
roll, and no relative slip occurs. The bending deflection of the back-up roll and 
the friction force vector on the contact surface are shown in Fig. 11. In the 
contact zone, the friction force distribution along the rolling direction is 
unilateral asymmetric, and it drives the rotation of back-up roll. Because the 
model is symmetric along the axial direction, the axial friction is symmetric and 
equal, which can cancel each other out.  

5 Conclusions 

(1) A review of three modern numerical solutions shows that the Finite 
Difference Method overly relies on artificial assumptions to obtain the desired 
results. The FEM is ineffective for the solution of large scale problems because it 
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is difficult to set friction elements and the elements will dramatically increase 
when the 3D body is discretized, and the FM-BEM can be combined with 
parallel computation and used to efficiently solve the problem of cold rolling 
processing with a high width-thickness ratio.  
 
(2) Some important parameters of strip rolling processing capacity are obtained, 
which include the rolling pressure, distribution regularities of the longitudinal 
and transverse friction stress, and the contact surface force. They are consistent 
with the actual measured distribution regularities. The rolling pressure takes on 
“pot bottom, cat’s ear” shape, which is the most significant characteristic. The 
surface friction stress points to the neutral surface. They can be obtained from 
the velocity distribution or friction distribution on the strip surface. The two 
results are consistent, and the size of neutral angle fits well with the result from 
S. Ekelund formula. The distribution of friction force vector clearly shows the 
metal flow state, the existence of forward slip, backward slip and stick zone, and 
the occurrence of width extrusion at the edge. The computational results 
represent the stress field with inhomogeneous deformation along the thickness 
and width directions in the strip rolling deformation area. 
 
(3) The computational results show that the FM-BEM requires the least artificial 
assumptions and can give the most information. Compared with the FDM and 
the FEM, the FM-BEM has the highest precision. 
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