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Abstract

Wave analysis in rocks is widely used in earthquake engineering and geophysical
exploration. Rocks under the ground include pores and cracks which are saturated
with pore fluid. Waves which propagate in the rocks are affected by these cracks
and pore fluid. Therefore, in the numerical simulation of the rocks, it is necessary
to consider the effects of both anisotropy and pore fluid. Biot has been proposed
as a mechanical model for describing the behavior of such a rock, and this model
forms a foundation for wave analysis of general anisotropic fluid-saturated porous
solids. This study aims to develop a boundary element method for wave scattering
in general anisotropic fluid-saturated porous solids. Formulation is based on the
following two kinds of boundary integral equations: one is those for displacement
of the solid skeleton and the other is for fluid pressure. Green’s function for
wave analysis in general anisotropic fluid-saturated porous solids is derived by
using Radon and Fourier transforms in space. Some numerical examples show the
validity of our proposed method.

Keywords: boundary element method, fluid-saturated porous solid, anisotropy.

1 Introduction

Wave propagation and scattering in rocks have been discussed in earthquake
engineering and exploration geophysics. Rocks in underground have the following
important properties: anisotropy, dispersion, and attenuation. Anisotropy is
generated by crystal preferred orientation of the rocks and aligned microcracks in
the rocks. Dispersion and attenuation are generated by porous structure of the rocks

WIT Transactions on Modelling and Simulation, Vol 61, © 2015 WIT Press
www.witpress.com, ISSN 1743-355X (on-line)
doi:10.2495/BEM380151



186 Boundary Elements and Other Mesh Reduction Methods XXX VIII

and existence of pore fluid. Therefore, it is desirable that the rocks be considered
as a general anisotropic fluid-saturated porous solid.

A wave theory of fluid-saturated porous solids has been proposed by Biot [1, 2],
and the theory considering anisotropic effects was subsequently presented [3]. The
mechanical model proposed by Biot is called Biot’s model, and there are various
expanded models which have been derived from Biot’s original one. Recently,
properties of waves propagating in anisotropic fluid-saturated porous solids are
discussed by many researchers [4-6].

In recent years, a novel time-domain BEM, convolution quadrature boundary
element method (CQ-BEM), has been proposed [7]. The CQ-BEM is a time-
domain BEM whose boundary integral equations (BIEs) are discretized by a
convolution quadrature method (CQM). The CQM evaluates Riemann convolution
f (&) * g(t) numerically, and requires Laplace transform of the function f(t).
Therefore, in CQ-BEM formulation, time-domain BIEs are solved using Laplace-
domain fundamental solutions. Main advantages of CQ-BEM are to produce stable
numerical solutions with small time increments compared with the conventional
one, and to deal with waves affected by dispersion and dissipation in time-domain.

Boundary element methods for poroelastodynamics based on Biot’s model
have been developed in the last few decades. Domigues proposed a frequency-
domain BEM formulation which describes dynamic behavior by using two kinds
of boundary values, i.e. solid displacement and fluid pressure [8]. On the other
hand, time-domain BEMs for Biot’s model have been developed with the advent of
the CQ-BEM [9, 10]. These formulations solved time-domain BIEs with respect to
solid displacement and fluid pressure as boundary values. However, these previous
BEM formulations can be applied to isotropic fluid-saturated porous solids only,
and the research on BEM for elastodynamics in general anisotropic fluid-saturated
porous solids has not been carried out, as long as the authors know.

In this paper, a CQ-BEM for two-dimensional wave scattering in general
anisotropic fluid-saturated porous solids is presented, and the validity of our
proposed method is confirmed. In the following sections, firstly, the theory of
Biot’s model is summarized, and CQ-BEM formulation is subsequently illustrated.
Numerical examples are presented after these descriptions. Throughout this paper,
summation convention is valid for repeated indices.

2 Biot’s theory

This section introduces Biot’s model [3], that is well known as a mechanical model
for general anisotropic fluid-saturated porous solids. The required assumptions
of the Biot’s theory are as follows: (1) Fluid-saturated porous solid consists of
solid skeleton and pore fluid. (2) Infinitesimal transformations occur between the
reference and current states of deformation. (3) The wavelength is large compared
with the dimensions of macroscopic values. (4) The conditions are isothermal.
(5) The fluid is viscous. (6) The fluid flows through the porous skeleton according
to Darcy’s law. Note that the presented model focuses on the anisotropy due to a
preferential alignment of the pores or cracks. This formulation can treat anisotropic
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effects of not only elasticity of the solid skeleton but also permeability of pore
fluid. In this section, the subscript written by a small letter takes the values from 1
to 3.

Constitutive equations for the Biot’s model are given by the following equations:

0ij = Aijrtin, + o Mwy i, (1)
p = —oapMug; — Mwy i, (2)

where o;; is total stress of the solid, and p is fluid pressure. u; and w; represent
displacement of the solid skeleton and flow of the fluid relative to the solid in the
unit section, respectively. In addition, ( ) ; = 0/0z;. M is Biot’s elastic modulus,

and oy, is Biot’s effective-stress coefficients for general anisotropy. Moreover,
A;jri denotes elastic tensor of undrained porous solid expressed as follows:

Ajjrr = Cijr + agja M 3)

where C};; is elastic tensor of drained porous solid, i.e. solid skeleton.
Equations of motion for the Biot’s model are expressed as follows:

0ij5 + pbi = pli; + i, “)
D + prci = fpful — mijzl')j — 777"1'3'11.)]' (5)

where p; and p are density of pore fluid and the porous solid. The density of the
porous solid p is given by the following equation: p = (1—)ps+3p; where 8 and
ps are porosity and density of the solid skeleton, respectively. b; and ¢; are body
force of the porous solid and pore fluid, respectively, and () = 0/0t. m;; is mass
matrix determined by geometry of pores. 7 is fluid viscosity, and r;; denotes the
flow resistivity matrix which is same with the inverse matrix of the permeability
matrix based on the Darcy’s law.

Characteristics of wave propagation in general anisotropic fluid-saturated
porous solids are as follows: The solids generate four body waves; i.e., quasi-fast
compressional wave (qP1), quasi-slow compressional wave (qP2), and quasi-shear
waves (qS1 and qS2). In addition, phase velocities of the waves depend on not only
propagation direction but also frequency, and the viscosity 7 effects great changes
on the behavior of qP2 wave.

3 Boundary element method

In this section, a formulation of convolution quadrature boundary element method
(CQ-BEM) for two-dimensional wave scattering in the anisotropic Biot’s model
is presented. The contents are as follows: Firstly, the BEM formulation based on
time-domain boundary integral equations (BIEs) is described. Secondly, time- and
spatial discretizations of the BIEs are conducted. Finally, fundamental solutions
for the target problems are derived. In this section, without notice, the subscripts
written by small and capital letters range 1 to 2 and 1 to 3, respectively.
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Figure 1: Wave scattering in general anisotropic fluid-saturated porous media.

3.1 Time-domain boundary integral equations

In our proposed method, the following boundary value vectors, generalized
displacement ¢; and traction sy, are used:

T T
q1 = {{uz} ) p} ) (6)
T T
sp= {{ti}T7 Pn} = {{Uijnj}T7 wjnj} (7N
where ¢; is the traction component of the solid, and p,, is normal derivative of the
pressure given by p,, = 9p/On. In addition, n; is the unit normal vector on the

boundary, and { }T denotes transpose of a vector. Our target is wave scattering as
shown in Fig. 1, and its initial conditions at point x are given as follows:

qI(X7 t) =0, QI(Xa t) =0,t=0. (8)

Considering wave scattering in infinite domain D whose boundary is S, a time-
domain BIEs for Biot’s model are expressed as follows:

ch»n<x¢):w?%x,w—+jécnkxx,y¢>*skwy,wdsoa

—/kamﬁ*%Wﬁ%@) ©)
s
where
1 : xeD,
Clx)=14 1/2 : x€8, (10)
0 : otherwise.

In Eq. (9), * denotes the Riemann convolution, and ¢'"(x, t) represents generalized
displacement for the incident wave. Moreover, Urgk (x,y,t) and Wik (X,y, )
represent time-domain fundamental solutions and its double layer kernels,
respectively.
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3.2 Discretization of boundary integral equations

Time- and spatial discretization of the BIEs shown in Eq. (9) gives an algebraic
equation which can be solved numerically. The presented discretizations are
applied by the following manners: Convolution quadrature method (CQM) based
on the backward difference formula is used for time-discretization. Collocation
method with constant shape function is used for spatial discretization.
Approximation formula of the CQM is given by the following equation:

F(nAt) x g(nAt) ~ an_k(At)g(kAt) (11)

k=0

where At represents time increment, and w,, is the weight function described as
follows:

-1 (2) o
wm(At) = =—— " f (E) e 2mimy (12)

The CQM parameters with an error magnitude O(e) are written as follows:

k
1 , .
v(z) = Z ;(1 —2) m= Re™>™1 R =, (13)
i=1

Note that Eq. (13) corresponds to the backward differentiation formulas of order k.
The form of the weight function shown in Eq. (12) is same with that of discretized
Fourier transform (DFT). In numerical computation, fast Fourier transform (FFT)
can be applied to this calculation if L is equal to the number of total time step N;.
Taking the limit process x € D — x € S and conducting the above-mentioned
discretizations, algebraic equation for wave scattering analysis is obtained:

N
- 1 0 n 0 n
Z [{25MN51K + B](W)N;IK}q](V;)K - Ag\/[)N;IKSEV;)K:|

N=1

n—1 N,
_ (n—k) (k) (n—k) (k)
=qy t+ AMN;IKSN;K - B]VIN;IKqN;K:| )

M:1727"'7N6an:1a2a"'7Nt (]4)

where 0,1, is Kronecker delta, and N, represents the number of boundary elements.
Moreover, A%?N 15 and BEJB\, 1x are influence functions expressed as follows:

_m L—-1 ‘
A%ZLK/;IK = T Z |;/SN UIK(XM7Ya Sl)dS(Y):| ei2ﬂlm%7 (15)
=0

L1
m R~ 1 —27im+
Bz(wzir;lK =7 Z [/SN WIK(X]Ma}’aSZ)dS(Y)} e 2mmE (16)
1=0
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where s; = y(z;)/At, and U[K(X, y,s)and W]K(X, ¥, s) are the Laplace-domain
fundamental solutions and its double layer kernels, respectively. Substituting
prescribed boundary conditions into Eq. (14) and solving the resulting algebraic
equation at each time step, the unknown boundary values can be obtained.

3.3 Fundamental solutions for anisotropic Biot’s model

Fundamental solutions for our proposed formulation are presented in this section.
Derivation procedure of the fundamental solutions presented here is almost same
with that of fundamental solutions for elastodynamics in general anisotropic solids
[11]. Note that our proposed method requires Laplace-domain solutions because
of implementation of the CQM.

Laplace-domain fundamental solutions Urk (x,y,s) are given by the following
equation:

LpoUgk (x,¥,5) = —0(x — ¥)dpK (17)

where §(-) is Dirac delta function, and s is Laplace parameter. The components of
matrix L;g are expressed as follows:

. [Ciprr 050y — pins”] {—aip0s}
fox = BkyYBUy , 16,8 ) (18)
~ T —
{any 0y} _Sﬁyﬁy 90, + M
where g = 0/0x3, and
- _ 1
ip = aig — pfYig's pik = poik — p3Yi, s Yik = mak + S ik (19)

It should be emphasized that the subscripts written by small and capital letters
range 1 to 3 and 1 to 4, respectively in Eqs (17)—(19). Moreover, the subscript
written by a Greek character takes the values from 1 to 2 in the above-mentioned
equations. Solving Eq. (17) using Radon and Fourier transforms in space, the
following fundamental solutions are obtained:

Uik(xay7 4 2/ ZA r,s, p (I‘,S,p)dL(p), (20)
T Jpl=1

. 1
U,‘3(X,y7s) = 47_‘_2/|| ) ZA;Z(IVS,P)‘I’a(I“,S?P)dL(P)y (21)
p|=

a=1

1 4
Unevos) = g [ DAt PRl s pILE) @)

PI=1 a=1

sy, = g [ 12 e, 5. P)Ba(r. 5 P)ILD)  (23)
|p _
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where r = x — y, and

>

(adj (L] |k=ka )15

A?K(T,S,p):ka—x7 I7K:17273547 (24)
Ol¥] det[LHk:ka
Dy (r,s,p) = e FalPTI B (—iky|p - x|) 4+ eFePT{E) (iky|p - r|) +in},
(25)
W, (r,s,p) =sgn(p-r)| —e *PTE (—ik,|p - 1))
+ elfalPrl (B (ko |p - x|) + i} | (26)

. ~

In Eq. (24), () and () denote spatial Radon and Fourier transforms. Moreover,
E;(+) in Egs (25) and (26) is the exponential integral, and k., is the wavenumber
of the four body waves obtained by solving the following eigen equation:

M

det[L] = C1k8 + CokS + O3k + Cyk?Z + Cs = 0, Im[k,] > 0 (27)

where C, Cy, - - - , C5 are coefficients.

In Egs (20)—(23), the integrals over the unit circle (|p| = 1) are implemented
as a consideration of the interference of the body waves propagating in every
direction. Moreover, the summation with respect to « denotes the superposition
of the four body waves. In this study, integrals over the unit circle are
evaluated numerically using double-exponential transformation [12]. Note that the
computational cost is quite high because the number of sampling points of these
integrals is set to be 1,400.

The double layer kernels Wik (x,y,s) are given by the following equations:

Wik (x,y,s) = BY ,Urs(x,y,s) (28)

where BY. ; is generalized traction operator shown as follows:

[=Cijrnj(y)o]  {—ain;(y)}

_ 1. (29)
{_prkllnl(Y)}T ;gyjl lnj(}’)al

RY  _
Bik =

In Egs (29), n;(y) represents the unit normal vector at the point y on the
boundary S.

4 Numerical examples

In this section, wave scattering by a cavity is solved using the proposed CQ-BEM.
Analytical model illustrated in Fig. 2 consists of a cavity whose radius is a, and
a source point y*'° is put at {—0.25a, —0.25a}T. Observation points are located
on the line, i.e. x1 = —2.6a and 0 < x3 < 2.5a. The material of the domain
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observation points
o

Al
—2.5

@;} ................ —2.5a

source point

c?/a*l?S c't/a =3.10

n

c*t/a=3.95 c*t/a = 4.80 c*t/a =5.65

c*t/a = 6.50 c“t/a=17.35 c't/a=8.20

(a) displacement component u; . (b) fluid pressure p.

c*t/a =3.95 c*t/a =5.65

c“t/a = 6.50 ct/a =735 “t/a=8.20

Figure 3: Time histories of the total wave field around a cavity (n # 0).

D is assumed to be brine saturated sandstone which is known as a transversely
isotropic medium [4]. The number of boundary elements and total time step are
set to No = 32 and N; = 512, respectively. Time increment At is given by
c*At/a = 0.05 where ¢* = /Cgg/ps and Cgg is a component of elastic tensor
in Voigt notation. In the presented analysis, incident wave is expressed by the
following equations:

4 (x,t) = Urk (%, y™°, 1) * pRe(t), (30)

() = 51;’{1_0 (2;’5)}{}1@ Hi-1T)} @D
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(a) displacement component 3¢ (b) fluid pressure p*°

Figure 4: Seismogram of the scattered waves on x1 = 2.6a (1 # 0).
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Figure 5: Time histories of the total wave field around a cavity (n = 0).

where H () represents Heaviside function. The period of source function is set to
T = 16At. Convolution integral shown in Eq. (30) is also computed using CQM,
and its parameters described in Eqgs (13) are given as follows: € = 1.0 x 1072 and
k=1.

Scattered waves around a cavity are shown in Fig. 3.

In these figures, incident waves generated at the source point are propagating
with complex wave surfaces because of anisotropy. When the incident waves
arrived at the surface of the cavity, scattered waves, qPlsc and qSlsc waves,
are generated. The interesting point is that incident qP2 (qP2in) wave presents
a diffusive behavior because of fluid viscosity. This behavior is in good agreement
with a previous research [4]. Figure 4 shows seismogram at the observation points
shown in Fig. 2.
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These results confirm that waveform and arrival time of scattered waves are
slightly changed.

Subsequently, further consideration of the effect of the fluid viscosity is
demonstrated. Numerical results in the case that the viscosity is set to 7 = 0 are
shown in Fig. 5.

The behavior of qP2 wave is quite different with that of the previous results.
In this case, P2 wave can be observed as a wave. Therefore, fluid viscosity is an
important factor for determining propagation of qP2 wave.

5 Conclusions

In this paper, a convolution quadrature boundary element method for general
anisotropic fluid-saturated porous solids is presented. The proposed formulation
uses CQM and collocation method for time and spatial discretizations,
respectively. Wave scattering problems by a cavity in brine saturated sandstone
are solved. Numerical results show the validity of our proposed method, and some
important characteristics of the waves in Biot’s model are confirmed.
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