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Abstract

A wide variety of engineering design tasks can be formulated as optimization
problems where the shape and topology of an elastic domain are optimized to
reduce costs, e.g. global compliance, while satisfying certain constraints, such as
volume constraint. We propose an application of a fast 3D boundary element code
to the problems of shape and topology optimization. Our algorithm is based on
the formalism of topological derivatives. Adaptive tree strategy of sampling of
topological derivatives inside the domain, high performance algebraic solver and
the analysis of optimization problem in reduced dimensions promise state of the
art performance in the problems of engineering optimization. The approach can be
applied to various optimization problems, such as minimization of compliance of
an elastic structure or minimization of the distance from a current homogenized
elasticity tensor of a periodic structure to the desired one. The efficiency of the
approach is illustrated with a numerical example.

1 Introduction

Structural, shape and topology optimization are classical areas of modern
engineering science. Pioneer works on structural optimization emerged in the
early sixties [1]. A number of efficient shape optimization techniques have been
developed subsequently, including boundary variation algorithms [2], level set
methods [3], homogenization [4]. A number of works illustrated that boundary
variation optimization approaches are naturally treated with boundary element
method (BEM) [5]. Few recent works [6, 7] have also demonstrated that BEM can
be a convenient tool for topological-shape optimization. Significant work has been
done in the adjacent field of shape sensitivity analysis in elastodynamics using
fast multipole BEM [8]. Modern fast BEM techniques (e.g. [9, 10]) enable the
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analysis of the systems with tens of millions degrees of freedom and can make
shape optimization procedures a lot more efficient than the intellectual labour of
an experienced engineer.

On the other hand, the emergence and rapid development of additive
technologies [11, 12] eliminated existing technological limitations on admissible
design shapes, and led to the situation when any optimized shape can be
immediately produced by the 3D printing device. These factors revived the interest
in large-scale shape and topology optimization techniques.

In this work we present our preliminary results on such a technique which
is based on the boundary element method (BEM) [13], topological derivatives
[14, 15] and the fast algebraic solver that utilize implicit H2 representation of the
system matrix [16]. Other key points of the proposed method should include a fast
algorithm of calculation of fields inside the domain and hierarchical tree sampling
of these fields. This combination promises to reach state of the art performance in
topological-shape optimization.

2 Mathematical foundations of the method

Our optimization procedure is based on the direct formulation of BEM
for elasticity [13]. The basic integral equation formulation uses Somigliana
displacement identity and in the absence of body forces for the domain Ω with
a smooth enough boundary Γ it can be written as:

1

2
ui(ξ) =

∫
Γ

Uij(ξ, x)pjdΓ−
∫
Γ

Pij(ξ, x)ujdΓ (1)

where ui(x) (pi(x)) is the displacement (traction) at the point on a boundary of the
domain, Uij(x, ξ) (Pij(x, ξ)) are the corresponding fundamental solutions. For the
case of a linear isotropic elastic material with the shear modulus G and Poisson’s
ratio ν they are given by:

Uij(ξ, x) =
1

16π(1− ν)Gr
((3− 4ν)δij + r,ir,j) (2)

Pij(ξ, x) =
1

8π(1− ν)r2

×
[
∂r

∂n
((1− 2ν)δij + 3r,ir,j)− (1− 2v)(r,inj − r,jni)

]
(3)

where r = |ξ − x|. Once the solution on the boundary is found, the stress at the
point inside the domain can be calculated according to:

σij(p) = −
∫

Γ

uk(x)Skij(p, x)dΓ +

∫
Γ

tk(x)Dkij(p, x)dΓ (4)

where Dkij(p, x) and Skij(p, x) are given by:
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Dkij(p, x) =
1− 2ν

2π(1− ν)r2

(
δkir,j + δkjr,i − δijr,k +

3

1− 2ν
r,ir,jr,k

)
(5)

Skij(p, x) =
3− 6ν

4π(1− ν)r3

×
[
δijr,k +

ν

1− 2ν
(δkir,j + δkjr,i)−

5

1− 2ν
r,ir,jr,k

]
∂r

∂n
(6)

+
1− 2ν

4π(1− ν)r3

×
[

3ν

1− 2ν
(nir,jr,k + njr,ir,k) + 3nkr,ir,j + njδki + niδkj −

1− 4ν

1− 2ν
nkδij

]
The numerical treatment of this formulation is presented in the next section. The
optimization procedure utilizes the concept of topological derivative (TD) – a cost
of making an infinitesimal spherical cavity with a center in a given point of the
domain. For the case of strain energy (compliance) cost functional and 3D linear
isotropic elasticity, the analytical expression of TD is available [14]:

DT (p) =
3

4E

1− ν
7− 5ν

[
10(1 + ν)σ(p) · σ(p)− (1 + 5ν)trσ(p)2

]
(7)

where E is the material’s Young’s modulus. It is important to note, that our
approach is not limited to the particular functional, and can be used to optimize
other functionals. One of the most promising applications is the optimization of the
elastic tensor of a periodic cell [17, 18]. Optimization strategies employing TDs
are usually based on the progressive elimination of the material. One particular
method of the optimization of a voxelized structure is presented in the example
section.

3 Numerical solution

The key feature for the large scale optimization procedure is the complexity
growth for increasing number of degrees of freedom. All the approaches that
use domain discretization cannot in principle be more efficient than O(M),
where M is the number of volume elements (finite elements, finite volumes
etc.). Since boundary element techniques require only the discretization of the
boundary, fast solvers (e.g. [9, 10]) allow finding the boundary solution for
O(N) or O(N · log(N)) operations (N ∼ M2/3). The TD computation is then
a volumetric computation and if done in a naive way, requires at least O(N)
operations. Moreover, even the computation and storage of the BEM matrix (which
is dense) requiresN2 operations. There are different approaches, that can be traced
back to the well-known fast multipole method, that reduce the complexity of
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the matrix-by-vector product to O(N logαN logβ ε−1, where ε is the accuracy.
The derivation of analytical multipole-type expansion for the elasticity problem
is possible, but very technical. Instead, one can use black-box type methods that
are kernel-independent [19–21]. In our work we use the h2tools software package
(http://bitbucket.org/muxas/h2tools) [16], in order to set up a fast iterative solver
of the boundary integral equation (1). The method requires only the information
about the geometry of the problem and a function that evaluates prescribed element
of the matrix.

Using the method of collocations and piecewise-constant approximation [13],
one can discretize the equation (1) into the following system of linear equations:(

1

2
I +∆P

)
· u = ∆U · p, (8)

where ∆Pij =
∫
Sk
Pmn(ξl, x)dSk, ∆Uij =

∫
Sk
Umn(ξl, x)dSk, i = 3k + m,

j = 3l + n, ξl is l-th collocation point and Sk is the area of k-th boundary
element. Regular terms (k 6= l) are evaluated numerically, singular terms (k = l)
are evaluated analytically (see [13] for details).

After straightforward rearrangement of columns in 8, we obtain the following
system of linear equations, where all unknowns appear in vector x, whereas
tractions or displacements known from boundary conditions appear in vector y.

A · x = B · y (9)

Within our approach, equation (9) is solved using H2 factorization of matrices A
and B, without direct calculation of all elements in these matrices. Our method to
computeH2 factorization uses recently developed multicharge Barnes-Hut method
(MCBH) [16], which provides O(N) performance (up to logarithmic factor) in
factorization and calculation of matrix-vector products needed for fast evaluation
of the right-hand side of 9, as well as for setting up an iterative solver. This allows
the analysis of large-scale problems.

Our method for topology optimization process requires TD computations inside
the domain using 4,5,2,7. Straightforward evaluation of a TD at a point inside the
domain takes O(N) operations. Application of fast methods (for example, MCBH
method adapted for a single-point evaluation) can reduce this cost to O(logN).
In combination with adaptive tree sampling of TDs, as described in [22], this
approach can boil the total complexity of this step down to O(NlogN).

4 Example

In this section we discuss a simple benchmark example that allows us to assess the
capabilities of our approach. Consider a 2D problem of optimization of a shape
and topology of a fixed support, previously discussed in [22]. The initial domain is
a square (Fig. 1(a)). The left side of the support is rigidly fixed, and the point load
is applied at the upper-right angle.
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Figure 1: (a) Initial problem setup (b) 2D solution, as obtained in [22]; (c) 3D
solution obtained with our code (d) Time perH2 matrix factorizations as
a function of number of problem’s degrees of freedom Ndof .

Our algorithm of topology optimization is based on successive elimination of
voxelized structure, which is a straightforward generalization of the algorithm
presented in [22] — at every iteration the material is eliminated if the value of TD
evaluated at the center of the voxel according to 7 is less than the certain critical
level, which is defined as Dc = Dmin + C · (Dmax − Dmin), Dmax and Dmin

being maximum and minimum values of the TD, and C is the constant (chosen in
range between 0.001 and 0.05). Figures 1(b) and 1(c) give the comparison of the
2D plane stress solution obtained in [22] and 3D solution obtained with 3D fast
BEM. The results are in reasonable agreement.

Figure 1(d) shows the time for the computation ofH2-factorizations of matrices
A and B (the most computationally expensive part of the solver) as a function
of the number of degrees of freedom in the model (Ndof ). Calculations were
performed on a regular laptop computer. It appears that our solver is reasonably
scalable and can be used for optimization problems with millions of degrees
of freedom (which correspond to billion “virtual” degrees of freedom if the
volumetric mesh was used).

5 Conclusions

In this note we presented our recent results on application of fast 3D BEM
techniques to the problems of topological-shape optimization. The method seems
to be very promising for the mechanical problems of large-scale topology
optimization. Immediate future work includes the development of fast algorithm of
calculations of fields inside the domain, as well as the algorithm of tree sampling
of these fields that has shown its efficiency in 2D [22].

Acknowledgement

The authors gratefully acknowledge the financial support from Russian National
Foundation under the grant 15-11-00033.

Boundary Elements and Other Mesh Reduction Methods XXXVIII  179

 
 www.witpress.com, ISSN 1743-355X (on-line) 
WIT Transactions on Modelling and Simulation, Vol 61, © 2015 WIT Press



References

[1] Schmit, L.A., Structural design by systematic synthesis. Proceedings, 2nd
Conference on Electronic Computation, ASCE, New York, 1960.

[2] Azegami, H., Shimoda, M., Katamine, E. & Wu, Z., A domain
optimization technique for elliptic boundary value problems. Computer
Aided Optimization Design of Structures IV, Structural Optimization, eds.
S. Hernandez, M. El-Sayed & C. Brebbia, Computational Mechanics
Publications, Southampton, 1995.

[3] Allaire, G., Jouve, F. & Toader, A.M., Structural optimization using
sensitivity analysis and a level-set method. Journal of Computational
Physics, 194(1), pp. 363–393, 2004.

[4] Allaire, G., Bonnetier, E., Francfort, G. & Jouve, F., Shape optimization by
the homogenization method. Numerische Mathematik, pp. 27–68, 1997.

[5] Meric, R.A. & Saigal, S., Load sensitivity analyses of elastic structures
by differential and boundary integral equation formulations. Structural
Optimization, 3, pp. 240–246, 1992.

[6] Marczak, R., Optimization of elastic structures using boundary element and
a topological-shape sensitivity formulation. Mechanics of Solids in Brazil,
Brasilian Society of Mechanical Sciences and Engineering, pp. 279–293,
2007.

[7] Bertsch, C., Cisilino, A., Langer, S. & Reese, S., Topology optimization of
3d elastic structures using boundary elements. Proc. Appl. Math. Mech. 8,
pp. 10771–10772, 2008.

[8] Nemitz, N. & Bonnet, M., Topological sensitivity and fmm-accelerated
bem applied to 3d acoustic inverse scattering. Engineering Analysis with
Boundary Elements, 32, pp. 957–970, 2008.

[9] Nishimura, N., Fast multipole accelerated boundary integral equation
methods. Applied Mechanics Reviews, 55(4), pp. 299–324, 2002.

[10] Benedetti, I., Aliabadi, M. & Davi, G., A fast 3d dual boundary element
method based on hierarchical matrices. International Journal of Solids and
Structures, 45, pp. 2355–2376, 2008.

[11] Melchels, F.P.W., Feijen, J. & Grijpma, D.W., A review on stereolithography
and its applications in biomedical engineering. Biomaterials, 31(24),
pp. 6121–6130, 2010.

[12] Gross, B., Erkal, J., Lockwood, S., Chen, C. & Spence, D., An evaluation
of 3d printing and its potential impact on biotechnology and the chemical
sciences. Analytical Chemistry, 86(7), pp. 3240–3253, 2014.

[13] Cruse, T.A., Numerical solutions in three-dimensional elastostatics. Int J
Solids Structures, 5, pp. 1259–1274, 1969.

[14] Novotny, A., Feijoo, R., Taroco, E. & Padra, C., Topological sensitivity
analysis for three-dimensional linear elasticity problem. Computational
Methods in Applied Mechanics and Engineering, (196), pp. 4354–4364,
2007.

180  Boundary Elements and Other Mesh Reduction Methods XXXVIII

 
 www.witpress.com, ISSN 1743-355X (on-line) 
WIT Transactions on Modelling and Simulation, Vol 61, © 2015 WIT Press



[15] Sokolovski, J. & Zochovski, A., Topological derivatives of shape functionals
for elasticity systems. ISNM International Series of Numerical Mathematics,
139, pp. 231–244, 2002.

[16] Mikhalev, A.Y. & Oseledets, I.V., Adaptive nested cross approximation of
non-local operators. arXiv preprint 1309.1773, 2013.

[17] Barbarosie, C. & Toader, A.M., Shape and topology optimization for periodic
problems. Part i: The shape and the topological derivative. Structural and
Multidisciplinary Optimization, 40, pp. 381–391, 2010.

[18] Barbarosie, C. & Toader, A.M., Shape and topology optimization for periodic
problems. part ii: Optimization algorithm and numerical examples. Preprint
CMAF, 017, pp. 1–14, 2008.

[19] Tyrtyshnikov, E.E., Mosaic-skeleton approximations. Calcolo, 33(1), pp. 47–
57, 1996.

[20] Hackbusch, W., Khoromskij, B. & Sauter, S.A., On H2-matrices. Springer,
2000.

[21] Ying, L., Biros, G. & Zorin, D., A kernel-independent adaptive fast multipole
algorithm in two and three dimensions. J Comput Phys, 196(2), pp. 591–626,
2004.

[22] Ostanin, I., Zorin, D. & Oseledets, I., Toward fast topological-shape
optimization with boundary elements. preprint arXiv, (1503.02383), pp. 1–5,
2015.

Boundary Elements and Other Mesh Reduction Methods XXXVIII  181

 
 www.witpress.com, ISSN 1743-355X (on-line) 
WIT Transactions on Modelling and Simulation, Vol 61, © 2015 WIT Press




