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Abstract 

In this paper we tackle solidification of a binary alloy that is modelled by fluid 
flow in free and porous media, heat and mass transport, phase change modelled by 
eutectic phase diagram, and microscopic species transport. The model is 
formulated through four tightly coupled Partial Differential Equations describing 
conservation laws, namely Navier Stokes equation, Darcy equation, and two 
convective-diffusive equations for describing heat and solute transport. The PDEs 
are supported by constitutive relations, contributing additional information 
regarding the diffusion transport, stresses, interfacial forces and buoyancy forces. 
The solution of the problem at hand is addressed from computational point of 
view, i.e. the numerical solution procedure is formulated in a way suitable for 
parallel execution, especially for multi and many core architectures. Results are 
presented in terms of macrosegregation maps, and parallel efficiency analyses. 
Keywords: meshless, parallel, fluid flow, solidification of a binary alloy, 
macrosegregation. 

1 Introduction 

Multiphase transport problems govern several interesting problems ranging from 
global weather systems to specific technological processes. In this paper we focus 
on the technological process of solidification, which is modeled with models based 
on thermodynamics and continuum mechanics in solids and fluids simultaneously 
[1]. The main incitement of the related research is to predict defects that occur 
during the solidification process, for example solute segregation [2, 3], i.e. the 
spatial variation of material composition within the solidified product that can 
severely deteriorate the quality of the final product. 
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     Solidification process is, at least in most practical cases, impossible to treat in 
a closed form. Therefore, the use of numerical modelling and simulation is the 
only option to effectively tackle the problem. The main complexities in numerical 
treatment of the solidification models are moving boundaries, high gradients in 
governing fields, strong couplings between the transport equations, coupling 
between different flow regimes, unstable flow of metallic fluids and completely 
advective transport. Regardless the substantial effort and resources invested to 
study the behavior of different numerical methods in the prediction of segregation 
[4–6], the commonly agreed solution is still not available. Although, a 
macrosegregation maps, i.e. the global segregation throughout the whole domain, 
can be predicted with a good agreement between different numerical solutions, the 
segregation on a smaller scale still remain unsolved problem. More details about 
the numerical simulation of segregation can be found in recent papers [7, 8], as 
well as experimental discussion of the topic in [9]. 
     In the majority of the solidification simulations the Finite Volume Method 
(FVM), the Finite Difference Method (FDM), or the Finite Element Method 
(FEM) [10] are used. However, reports on successful application of the meshless 
methods [11] in the simulation of solidification have been also recently reported 
[7, 8]. One of the promising meshless techniques is the Meshless Local Strong 
Form Method (MLSM) that is essentially a meshless generalization of the FDM. 
The basic concept MLSM is to approximate considered fields with the nodal trial 
functions over the local support domain, which is then further manipulated to 
compute all required differential operations. Such an approach is used in similar 
methods known as Diffuse Approximate Method (DAM) [12], Local Radial Basis 
Function Collocation Methods (LRBFCM) [13], Generalized FDM [14], 
Collocated discrete least squares (CDLS) meshless [15], etc. 
     Regardless the numerical method, the solution algorithms are executed on 
computers. To effectively address the problems of the solidification process by 
simulations, the execution time has to be addresses adequately. The main 
advantage of the MLSM, from the computation point of view, is that the 
localization reduces inter-processor communication, which is often a bottleneck 
of parallel algorithms [16]. In this paper a parallel solution procedure for solving 
the solidification problem, based on the MLSM numerical technique, is discussed. 
The discussion is supported with simulation results and execution performance 
analyses. 

2 Solidification model 

Considered model is also referred as to a “minimal” solidification model, since it 
is simplified to the largest possible degree, however, still accurate enough to 
capture several interesting phenomena like macro and meso segregation [7]. The 
model originates in the paper of Ni and Beckermann [17] and was later employed 
in many works [18–20], including in a call for a benchmark solution [6]. The set 
of governing equations is based on continuum conservation laws and related 
constitutive relations, it comprises energy and solute transport, incompressible 
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Newtonian and porous Darcy fluid flow, and Eutectic phase diagram coupled with 
the solute transport over the phase front: 
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Mixture velocity: ,L Lfv v  (5) 

Kozeny–Carman relation:  23
0 / 1 ,L LK K f f   (6) 

Boussinesq approximation:  ref ref ref1 ( ) ( ) ,T C LT T C C      b g  (7) 

Enthalpy formulation: ,p Lh c T f L   (8) 

Mixture concentration:  1 ,L L p LC f f k C      (9) 

Phase diagram: .F L LT T m C   (10) 

 
     In the above model following quantities are used: mixture velocity v , intrinsic 
liquid velocity Lv , enthalpy h , average concentration C , and the pressure P , 

respectively. The permeability K  is defined through a permeability constant 0K  

and the liquid fraction Lf . The thermo-physical properties, i.e. viscosity  , 

thermal conductivity  , specific heat pc  and density   are assumed to be equal 

and constant in both phases. The buoyancy term b  depends on the temperature 

T , the liquid concentration LC , the thermal expansion coefficient T , the 

concentration expansion coefficient C , the reference density ref  given at the 

reference temperature refT  and the reference concentration refC . The binary 

phase diagram is defined by the liquidus slope Lm , the equilibrium partition 

coefficient pk  and fusion temperature of the pure solvent FT . Symbols andt g  

stand for time and gravity acceleration, respectively. 
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3 Parallel numerical algorithm 

To solve PDEs at hand a MLSM numerical technique is used. The main goal is to 
evaluate partial differential operator L, in a present case only first and second 
derivatives, of the considered field θ. In MLSM this is done by applying L on the 
approximation of a considered field over the local support domain, i.e. only small 
local sub-set of nodes 
 

(11)

 
where ܚ ൌ ሺx, yሻ, ௦ܰ	and	χ stand for position vector, number of support nodes, and 
shape functions, respectively. To construct shape functions and theirs derivatives 
one has to: distribute nodes over the domain, find support domains, and construct 
appropriate approximation functions. These steps can all be done in a pre-process 
phase, as long as nodal topology does not change during the simulation. Later, in 
the simulation, only convolution of shape functions and values of considered fields 
in support domain nodes is required to evaluate a general L. More details about 
the MLSM can be found in [7, 21–24]. 
     The temporal discretization is done by explicit time stepping 
 

, (12)

 
where t denotes time-step index. Since all new time-step values are computed only 
from the previous ones, the algorithm do not need to communicate with 
neighbouring nodes to evaluate operator L. 
     The pressure-velocity coupling is performed also locally by Artificial 
Compressibility Method (ACM) [25]. 
     And finally, consideration of equations (5) to (10) do not require any 
differentiation of governing fields and therefore it is local by default. 
     The complete locality of the introduced algorithm has several beneficial effects. 
Besides simplicity and straightforward implementation, there are high 
opportunities to fully exploit modern computer architectures through different 
parallel computing strategies [16, 26]. Figure 1 summarizes the solution 
procedure, note that tasks that are directly parallelized are marked as “parallel”. 
Note also that those parts of the code present bulk of the execution time. 
     In this paper the OpenMP (Open Multi-Processing) Application Programming 
Interface (API) that supports multi-platform shared-memory multiprocessing 
programming is used for demonstration of the parallel implementation. Since all 
spatial loops are completely independent no additional effort is required to apply 
shared-memory parallelization, i.e. each spatial loop is simply executed with 
pragma omp parallel for with static scheduling. 
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Figure 1: Diagram of parallel numerical algorithm. 

4 Results 

4.1 Integration of solidification model 

The numerical integration of the Sn-10%Pb solidification is presented in Figure 2 
in terms of segregation map, i.e. the contour plot of concentration. The simulation 
starts with a well-mixed  10%oC  , stationary  0v  over-heated 

 0 220 CT    liquid. The heat transport is driven by extracting heat from the right 

side of the domain (10x6 cm rectangular cavity), described by the Robin boundary 
condition. Since the problem is symmetric, only a half of the domain needs to be 
numerically computed (5x6 cm). The symmetry is coped with Neumann boundary 
conditions applied for all fields on the symmetry line. The domain is thermally 
isolated, a constant concentration is prescribed and no-slip and no-permeable 
velocity boundary conditions are applied on all boundaries, except the right one, 
i.e. the symmetry line. The initially uniformly heated liquid cools from the right 
side, which induces the thermo-solutal natural convection, i.e. the fluid flow. The 
main characteristics of the segregation are visible soon after the beginning of the 
solidification. Note that the solute is transported only by advection, i.e. the 
segregation characteristics, at least on a global scale, depends only on the flow 
structures. A positive segregation patch at the bottom of the enclosure and a 
negative segregation patch in the upper part are soon clearly visible. The channel-
like anomalies in concentration field occur as a consequence of instabilities in the 
porous mushy zone. The mechanism behind that phenomenon is still not fully 
explained, however, it has been observed also experimentally [27], which 
confirms that such behavior is not a product of numerical instabilities. More 
details, including all parameters, thermo-physical properties, and boundary 
conditions can be found in [7, 8]. 
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Figure 2: Simulated segregation map after 40 s (left) and after 160 s (right). 

4.2 Execution performance 

The performance of the execution is assessed through the speedup measurements, 
defined as 

1

C

C
N
C

t
S

t
 ,                                                   (13) 

where CN
Ct  stands for the execution time on CN  cores. The speedup with respect 

to the problem size, i.e. the number of computational node is presented, for 2, 4, 
8, and 16 cores, in Figure 3. The speedup, as expected, depends on the number of 
involved cores as well as the problem size. The speedup is governed at least by 
two effects: available floating point processors and memory access latencies. In 
cases, when more cores are used, each time a core modifies a memory location on 
its local cache, it invalidates the caches on other cores that occupy the same 
memory location. While this frequently happens on shared data, it also happens 
on private data, because multiple variables might inhabit the same cache block. 
On the other hand, more cores provide more processing power needed to convolute 
shape functions and values of considered field in support domain nodes to evaluate 
differential operations. The interplay of those two effects determines the final 
speedup. In [23] a detailed analysis of such a phenomena is presented and 
supported with low-level cache hit rate measurements. 
     There are also several other factors that have might affect the parallel execution 
efficiency, e.g. motherboard architecture, bandwidths of data and program buses, 
cache policies, accumulation of caches, etc. 
     Tests have been performed with an in-house code written in C++ programming 
language, compiled with GCC 4.8 compiler with full optimization enabled, on a 
computer system with four Intel Xeon E7450 processors, each with six cores, 
system clock of 2.40 GHz, 1066 MHz front side bus (FSB), 64 GB of shared main 
memory and without hyperthreading technology. The system has three levels of 
cache hierarchy: Each core has L1 execution cache (32 KB) to store micro- 
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Figure 3: Speedup with respect to the number of involved cores and problem 
size, i.e. number of computational nodes. 

operations (shortest decode time on cache hits) and data cache (32 KB) to improve 
data tracing. Each pair of cores shares 3 MB of L2 cache, for a total of 9 MB of 
shared L2 cache per processor. Each processor has 12 MB of shared L3 cache. The 
6-core modules communicate through 64 GB of shared main memory. 

5 Conclusion 

In this paper a local algorithm for solving multiphase problems, namely 
solidification of a binary alloy, is presented. All elements of the algorithm are 
formulated in way that only few supporting nodes have to be accessed during the 
simulation in order to compute required partial derivatives. Besides local spatial 
discretization, an explicit temporal stepping and ACM are used to assure complete 
localization of the solution procedure. Consequently, a minor amount of effort and 
expertise are required to parallelize it with an OpenMP API. Execution 
performance is demonstrated on an off-the-shelf computer server with 4 CPUs, 
each with 6 cores. Despite the fact that practically no effort was required to execute 
the code in parallel, the decent speedups have been observed. The shared memory 
parallelization efficiency depends on the computer architecture. For example, in 
[23, 28] the super-linear speedup is demonstrated on execution of MLSM in solely 
thermo-fluid flow simulation. A solidification model, considered in this paper, 
requires much more numerical attention and therefore more detailed analysis of 
memory accesses would be required to drawn more detailed conclusion, however, 
that is out of the scope of this paper. 
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