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Abstract 

A finite element model is derived for flow-induced instability analysis of multi-
layered, filament wound FRP pipelines resting on equispaced elastic supports. The 
critical flow velocity causing instability is obtained by taking into account the 
anisotropic properties of pipes material, the elastic properties of pipeline supports 
and flow parameters. A representative example is solved and discussed. 
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1 Introduction 

Even though fiber reinforced polymeric (FRP) materials, apart from high strength 
and low density provide superior behavior than steel in corrosion, reducing thus 
the maintenance cost, their use for pipeline installations is not as wide as should 
be expected. However, in the last decade the increasing rate of adopting FRP’s for 
pipelines means that the industry is not far from extended applicability of 
composite materials for pipeline projects [1]. Since steel is still the main material 
used for long pipeline infrastructures, the flow-induced instability has 
systematically been analyzed only for such isotropic material. Application of the 
accumulated dynamic analysis know-how developed for steel pipelines on FRP 
ones is not possible due to their anisotropic behavior. In the present work, finite 
element (FE) analysis is carried out for critical flow velocities estimation of 
filament wound, multi-layered FRP pipelines resting on elastic supports. 
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2 Classical lamination theory 

 Based on Kirchhoff assumption, the correlation of strains , ,o o o
x y xy   and 

curvatures , ,o o o
x y xyk k k of the middle plane of a laminate (Figure 1) with the 

corresponding force (per unit length) and moment (per unit length) resultants 
, ,x y xyN N N , , ,x y xyM M M is given by the following equation (e.g. [2]): 
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Figure 1: Layout of an FRP laminate. 

     The components aij, bij, dij of the above matrix can be derived by the following 
equation: 
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     In equation (2) the following definitions are valid: 
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     In the above equations, N is the number of layers composing the laminate, zk 
represents the distances of any layer k from the end surface of the laminate, and 
the parameters 

ijQ are given for each lamina by the following equations: 
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     The parameters m, n depends on the fiber orientation angle ϑ of each lamina 
(Figure 1): 
 

cosm                                                   (12) 
 

sinn                                                    (13) 
 

     The parameters ijQ are correlated to material properties in the principal 

coordinate system 1 2x x  (Figure 1) of each individual lamina composing the 

laminate: 
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     E1, E2 are the elasticity moduli, G12 is the shear modulus and ν12, ν21 are the 
Poisson’s ratios in the principal coordinate system x1-x2. 

3 Motion equation of multi-layered filament wound  
FRP pipes 

According to [3], the motion equation of filament wound FRP pipe is given by: 
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     M, m is the mass per unit length for the liquid and the pipe’s material 
respectively, U is the mean velocity of the liquid, w(x,t) is the elastic deflection of 
the pipe and Seq is the equivalent bending stiffness of the pipe for bending moment 
calculation: 
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     The parameter eqS  can be obtained from [3]: 
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     In the above equations M(x) is the bending moment, and D is the diameter of 
the pipe. 
     Substituting (e.g. [4]) into equation (19) the solution (22) 
 

( , ) Re ( ) i tw x t u x e     ,                                        (22) 
 

the following equation can be obtained: 
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3.1 Element equation of a pipe segment 

Following a standard mathematical procedure the differential equation (23) can be 
transformed to the following matrix differential equation of first order: 
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d
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                                           (24) 

 

     In equation (24) the following is valid: 
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Therefore, the solution of the matrix equation (24) can be written: 
 

   [ ]
2 1.LY e Y                                            (27) 

 

L is the length of the pipe segment 1–2. 
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Taking into account the following relations of solid mechanics: 
 

( ) ( )x u x                                                (30) 
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where ( ), ( ), ( )x m x f x  is the slope, bending moment and shear force 

distribution, the matrix equation (27) can now be written in the following form: 
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     Let’s assume that the matrix exponential 
[ ] Le 

 is expressed by the following 
matrix: 
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     Performing some rearrangements in eq. (33), the following expression can be 
obtained: 
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     In equation (35) the following is valid: 
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     Therefore, the following equation for a segment 1-2 can be derived: 
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     In equation (38) we have: 
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                                              (39) 

4 Pipeline resting on elastic supports 

Let’s assume a pipeline resting on equispaced elastic supports (Figure 2). The 
elastic supports can be linear springs with elastic constant k. Since the length and 
the material properties of all pipe segments are equal, the equation (38) represents 
the element equation of each pipe element. Let’s express the equation (38) for two 
successive nodes i,j in the following form: 
 

 

Figure 2: Nodes of a periodically multi-supported pipeline resting on elastic 
supports. 
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     Expansion of the above equation in global coordinates for any individual 
element i-j and superposition of the expanded element equations of all pipeline 
segments, yields: 
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or in an abbreviated form: 
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     The above equation can also be written as 
 

     
   2 1

2 2 2 2 2 1
2 1

0Nx
Nx N Nx N Nx

Nx

d
G I

F

 
     

 
                (43) 

 
     Equation (43) is a 2Nx2N algebraic system with respect to the following 4N 
unknowns  
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     In order for the algebraic system provided by equation (43) to be solvable, it 
should be completed by 2N more equations. Let’s consider the multi-supported 
pipeline demonstrated in the Figure 2. The boundary conditions for this example 
are 
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     The above boundary conditions can be written in the following matrix form: 
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     In equation (46) the following is valid: 
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     Combination of equations (43), (46) yields the following 4Nx4N algebraic 
system: 
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     The condition for non-trivial solution of the equation (49) is: 
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     The above equation can be solved numerically, providing the values of ω 
versus the values of U. Critical are the values of U yielding the transition of Im{ω} 
from  a positive value (stability) to a negative one (instability). 
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5 Implementation in a representative example 

An S-Glass/Epoxy pipeline is resting on one linear spring located at the middle of 
its length and on its fixed ends (Figure 3). The interior diameter of the pipeline is 
 

 

Figure 3: S-Glass/epoxy filament wound pipeline resting on a linear spring. 

     D=0.10 m and the laminated wall is composed of N=50 layers with thickness 
0.15 mm. The material properties in the principal directions of each layer are 
E1=39 GPa, E2=8.6 GPa, G12=3.8 GPa, ν12=0.2, and the masses per unit length 
m and M have values m=4.94 Kg/m and M=7.85 Kg/m. With the aid of the 
procedure described above the effect on the value of critical flow velocity of the 
span between supports, fiber orientation and value of springs elastic constant is 
going to be estimated. Taking into account the material data, the [abd] matrix given 
in equation (2) can be initially obtained for ϑ=±30, 45, 60 deg. Then, the parameter 
Seq can be calculated by the equation (21), yielding Seq(30°)=314237 Nm2, 
Seq(45°)=196224 Nm2, and Seq(60°)=146115 Nm2. The vectors {d} and {F} 
contain the following nodal displacements and forces corresponding to the 
example of Figure 3: 
 

   1 1 2 2 3 3d u u u                              (51) 

 

   1 1 2 2 3 3F F M F M F M                       (52) 

 
     The boundary conditions are incorporated in the matrices [A] and [B]: 
 

 

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

k
A

 
 
 

 
  
 
 
 
 

                                 (53) 
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 

0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

B

 
 
 
 

  
 
 
 
 

                                  (54) 

 
     The matrix [G] can be obtained by the implementation of equation (41) to the 
considered example. Therefore, its members contain functions of the variables U 
and ω. Using the matrices [A], [B], [G], the equation (50) can be derived yielding 
a correlation of U versus ω. For four values of spring elastic constant, namely 
k=35, 45, 55, 65 KN/m, the equation (50) is solved numerically in order to 
calculate the eigen-frequencies ω for three values of fiber orientation, ϑ=±30, 45, 
60 deg, and for three values of pipe span, L=10, 15, 20 m for each value of ϑ. 
     Starting from a small initial value U=1.0 m/s for the flow velocity which is 
changed incrementally with step 1.0 m/s, the eigen-frequency ω is calculated using 
the standard commercial program Mathematica®. The critical flow velocity values 
corresponding to the transition of Im{ω} from a positive value (stability) to a 
negative one (instability) are demonstrated in the Figures 4(a–c). It should be 
noted that the numerical results indicated many changes of Im{ω} from positive to 
negative values. Therefore, the pipeline has more than one critical flow velocity. 
In the Figures 4(a–c) only the first critical flow velocity is adopted. According to 
the above results the following main conclusions can be drawn. 
     For each value of fiber orientation angle, short pipe segments increases the 
value of critical flow velocity, improving thus the stability of pipeline. The 
percentage of Ucr shift is higher for the smallest value of ϑ and decreases 
progressively for the higher values of ϑ. 
(a) For each value of span length L, higher values of critical fluid velocities 

appeared for the smaller values of ϑ. This result was expected since small fiber 
orientation angles improve the bending stiffness of the pipeline, reducing thus 
the bending deformation. 

(b) For the larger values of ϑ and L, the critical flow velocity seems to be 
independent of the elastic modulus of the spring support. Therefore, stiff 
supports do not affect the stability of flexible pipelines. However, for pipelines 
with higher bending stiffness (e.g. ϑ=30 deg), stiff elastic springs (k=35÷45 
KN/m) seems to increase the critical flow velocity. 

6 Conclusions 

1. A finite element methodology for critical flow velocity yielding flow-induced 
instability in FRP filament wound pipelines has been proposed. 

2. The exhibited procedure takes into account the fiber orientation, wall 
thickness, elastic modulus of spring supports, and flow parameters. 
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Figure 4: Critical flow velocity versus spring elastic constant for L=10 m, L=15 
m, and L=20 m. (a) Fiber orientation angle ϑ=±60 deg, (b) Fiber 
orientation angle ϑ=±45 deg, (c) Fiber orientation angle ϑ=±30 deg 

3. The condition for non-trivial solution of the derived pipeline equation yields 
the eigen-frequencies ω versus flow velocity U. The value of U causing 
transition of Im{ω} from a positive to a negative value, defines the boundary 
between pipes stability and instability. 

4. An implementation of the methodology to a simple pipeline resting on an 
elastic spring, indicated that flow-induced instability can be avoided by short 
pipeline spans and small fiber orientation angles. Very flexible pipelines 
cannot be affected by very stiff supports, while stiff pipelines can improve their 
stability for certain values of stiff supports. 
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