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Abstract 

This paper presents an efficient and accurate boundary integral equation method 
for solving a linear, multi-field, half-space containing a surface of discontinuity 
and subjected to symmetrical and anti-symmetrical conditions on the boundary. 
Responses of the half-space are governed by a set of linear partial differential 
equations which are formulated in a general framework allowing the treatment of 
Laplace equation, linear elasticity problems, and problems involving multi-field 
materials such as piezoelectric, piezomagnetic, and piezoelectromagnetic solids. 
In the formulation, a systematic regularization procedure via the integration by 
parts, symmetrical and anti-symmetrical properties, and special representations of 
strongly singular and hyper singular kernels is employed to derive a set of 
singularity-reduced boundary integral relations. A pair of weak-form boundary 
integral equations involving both the sum and relative crack-face state variable 
and surface flux across the discontinuity surface is finally established and they 
contain only weakly singular kernels. A standard symmetric Galerkin boundary 
element method (SGBEM) is then implemented to solve those weakly singular 
integral equations for unknown data on the discontinuity surface. In numerical 
implementations, continuous local interpolation functions are employed in the 
approximation of solutions and an efficient means for both the kernel evaluation 
and the numerical integration is adopted to enhance the accuracy and 
computational efficiency of the developed scheme. The proposed numerical 
technique is then verified with various, reliable benchmark cases and a selected 
set of results is presented to demonstrate its capability and robustness. 
Keywords: half-space, discontinuity, SGBEM, SIFs, T-stress, weakly singular. 
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1 Introduction 

A half-space containing a surface of discontinuities is one of mathematical 
domains commonly used to represent a physical body in the simulation of 
localized, near-surface flaws, defects, and impurities if their sizes are sufficiently 
small in comparison with the characteristic dimensions of the body. Such 
idealization significantly simplifies the real geometry, reduces the computational 
effort, and also yields the reasonably accurate prediction relative to the full 
analysis of the whole body. Various investigators employed the classical theory of 
linear elasticity and the concept of linear fracture mechanics along with either 
analytical or numerical solution procedures to model, simulate, and solve cracked 
half-spaces under various scenarios (e.g. [1–6, 9–12, 17]). Among various existing 
techniques, ones based on boundary integral equations have been found attractive 
and extensively employed in the analysis procedure due to their simplicity to treat 
the unbounded geometry (e.g. [3, 5, 6, 9, 17]). With the proper incorporation of 
fundamental solutions to satisfy the conditions on the free surface, the key 
governing integral equations simply involve unknowns on the discontinuity 
surface and this, as a result, significantly reduces the number of degrees of freedom 
resulting from the discretization (e.g. [6]). However, the strong smoothness 
requirement of the crack-face data due to the presence of strongly singular and 
hyper singular kernels still poses the difficulty on most of conventional boundary 
element methods. An attractive alternative to circumvent such difficulty is to 
employ singularity-reduced boundary integral equations that contain  
kernels of weaker singularity and require less smooth crack-face data. Li [6] 
successfully derived weakly singular integral equations for cracks in an elastic half 
space under various boundary conditions. However, his formulation was limited 
to an isotropic case and the implementation of those equations to solve half-space 
problems has not been recognized. The regularization procedure analogous to that 
used by Li [6] was extended to model cracks in a whole space and finite bodies [7, 
8] and to take into account the material anisotropy [13, 14], but the extension for 
the case of a half-space has not been found. In the present study, the procedure 
used by [6, 7, 13–15] is further generalized to derive a set of regularized integral 
equations for a half-space containing discontinuities and made of multi-field 
materials. In addition, a solution scheme based on a well known, weakly singular 
boundary integral equation method is also established. 

2 Problem description 

Consider a half-space 3   containing embedded and surface breaking 
discontinuities as shown schematically in Figure 1. The surface of discontinuities 
in the reference state can be represented by two geometrically identical surfaces 
S+ and S– with the corresponding outward unit normal vectors n+ and n–, 
respectively. For convenience in the later development, a reference Cartesian 
coordinate system (O; x1, x2, x3) with the orthonormal base vectors {e1, e2, e3} is 
chosen such that the origin O is located on the free surface; the x3-axis directs 
downward; and the x1- and x2-axes follow the right hand rule. 
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Figure 1: Schematic of a half-space containing isolated discontinuities and 
subjected to boundary condition of the type BC on the free surface. 

     A state of the half-space under the action of external excitations is assumed 
completely described by   vector fields (1) (2) ( ), ,..., u u u  and   scalar fields 

[1] [2] [ ], ,...,    , which are termed the “state variable”. The spatial variation of the 

state variable is measured by   symmetric, second-order, tensor fields 
(1) (2) ( ), ,..., ε ε ε  and   vector fields [1] [2] [ ], ,..., g g g , and they are directly related 

to the state variable by 

( ) ( ) ( ) [ ] [ ]
, , ,

1
( ),    

2
k k k k k

ij i j j i i iu u g                                      (1) 

where a symbol ,if  is used to represent a partial derivative of a function f  with 

respect to the coordinate ix . Here and in what follows, lower-case indices, lower-

cases indices with the parenthesis, and lower-case indices with the bracket range 
from 1 to 3, 1 to , and 1 to , respectively, and the repeated indices imply the 
summation over their range. Now, the flux within the body used to measure the 
internal responses induced by the external disturbance and commonly termed the 
“body flux” can be described by   symmetric, second-order, tensor fields

(1) (2) ( ), ,..., σ σ σ  and   vector fields [1] [2] [ ], ,..., s s s . The body flux is related to 

the gradient of the state variable via the following linear constitutive relations: 

( ) ( )( ) ( ) ( )[ ] [ ]+k k r r k r r
ij ijpq pq ijp pE D g  ,   [ ] [ ]( ) ( ) [ ][ ] [ ]+k k r r k r r

i pqi pq ip ps D C g                 (2) 

where ( )( )k r
ijpqE , ( )[ ]k r

ijpD , and [ ][ ]k r
ipC  are fourth-, third-, and second-order tensors 

containing material constants. In the present study, materials are limited to those 
satisfying following symmetries: ( )( ) ( )( ) ( )( ) ( )( )k r k r k r k r

ijpq jipq ijqp pqijE E E E   , ( )( ) ( )( )k r r k
ijpq ijpqE E , 

( )[ ] ( )[ ]k r k r
ijp jipD D , [ ]( ) [ ]( )k r k r

ijp jipD D , ( )[ ] [ ]( )k r r k
ijp ijpD D , [ ][ ] [ ][ ]k r k r

ip piC C , [ ][ ] [ ][ ]k r r k
ip ipC C  

and, in addition, the 1 2x x  plane is the plane of material symmetry. Besides (2), 

the body flux is also related to the applied distributed body source, denoted by   

vector fields (1) (2) ( ), ,..., b b b  and   scalar fields [1] [2] [ ], ,...,a a a  , by 

( ) ( )
, 0k k

ji j ib   ,   [ ] [ ]
, 0k k

i is a                                     (3) 
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The surface flux at any point on an oriented, smooth surface with the 
corresponding unit normal vector n, denoted by   vectors (1) (2) ( ), ,..., t t t  and   

scalars [1] [2] [ ], ,...,d d d  , is related to the body flux by 

( ) ( )k k
i ji jt n ,   [ ] [ ]k k

j jd s n                                       (4) 

     A set of basic field equations shown above for multi-field problems can be 
applied to various cases by first setting the value of the integers  and  and then 
properly defining the field quantities and material constants to match those of each 
particular problem. For instance, it is applicable to steady-state heat conduction 
problems, steady-state flows in porous media, and Laplace equation for  = 0 and 
 = 1, to linear elasticity problems for  = 1 and  = 0, to linear piezoelectric and 
linear piezomagnetic problems for  = 1 and  = 1, and to linear 
piezoelectromagnetic problems for  = 1 and  = 2. For conciseness of 
representations, we define a single (3 + )-component vector û  containing all 

components of the state variable (1) (2) ( ), ,..., u u u and [1] [2] [ ], ,...,     such that 
( )k
iu  is stored at 3( ) 3ˆ k iu    and [ ]k  is stored at 3 [ ]ˆ ku   and a single 3x(3 + ) matrix 

σ̂  containing all components of the body flux (1) (2) ( ), ,..., σ σ σ  and [1] [2] [ ], ,..., s s s  

such that ( )k
ij  is stored at ,3( ) 3ˆi k j    and [ ]k

i  is stored at ,3 [ ]ˆi k  . With this 

definition, (3) and the combination of (1) and (2) take a form: 

,
ˆˆ 0iJ i Jb   ;   ,

ˆˆ ˆiJ iJKm K mE u                                      (5) 

where ˆ
Jb  denotes the “distributed body source” obtained from (1) (2) ( ), ,..., b b b  

and [1] [2] [ ], ,...,a a a   in the manner consistent with ˆiJ ; ˆ
iJKmE  is termed the 

“generalized moduli” obtained from ( )( )k r
ijpqE , ( )[ ]k r

ijpD , and [ ][ ]k r
ipC  in the manner 

consistent with ˆiJ ; and, here and in what follows, upper case indices range from 

1 to (3 + ) and repeated indices imply the summation over their range. It is 

worth noting that due to the symmetry of 
( )( )k r
ijpqE , ( )[ ]k r

ijpD  and 
[ ][ ]k r
ipC , ˆ

iJKmE  

obviously satisfies ˆ ˆ
iJKm mKJiE E . Similarly, the surface flux (1) (2) ( ), ,..., t t t  and 

[1] [2] [ ], ,...,d d d   can be stored in a single (3 + )-component vector t̂  such that 
( )k
it  and [ ]kd  are stored at 3( ) 3

ˆ
k it    and 3 [ ]

ˆ
kt  , respectively. As a result, 

components of t̂  are given by ˆ ˆJ iJ it n . In the present study, material properties 

are assumed homogeneous; the distributed body source and the remote excitation 
identically vanish; and the surface of discontinuities is sufficiently smooth. On 

3 0x  , the half-space is subjected to either a symmetrical boundary condition 

(termed BC1) or an anti-symmetrical boundary condition (termed BC2); in 
particular, the conditions 3( ) 2 3( ) 1 3( ) 3 [ ]

ˆ ˆ ˆ ˆ= = = =0k k k kt t u u    and the conditions  

3( ) 2 3( ) 1 3( ) 3 [ ]
ˆ ˆˆ ˆ= = = 0k k k ku u t t     are satisfied on 3 0x  for BC1 and BC2, respectively.  
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3 Fundamental solutions of half-space 

Fundamental solutions of both the state variable and the body flux for a half-space 
under BC with  = 1, 2 can be constructed using the existing general fundamental 
solutions of the whole space (e.g. [15]) along with the symmetrical and anti-
symmetrical conditions. It should be emphasized that results presented here are 
limited only to the case that a material constituting the half-space is homogeneous 
and possesses the plane x3 = 0 as a plane of material symmetry. 
     Now, consider a half-space subjected to boundary conditions of the type BC 

(for  = 1, 2) and a unit concentrated source ˆMb  (with their components defined 

by ˆ ( ) ( )M
J JMb   ξ ξ x ) at a source point k kxx e  as shown in Figure 2(a) where 

JM  denotes the Kronecker-delta symbol and ( ) ξ x  is the Dirac-delta 

distribution centered at x . This half-space is identical to the bottom half of the 

whole space subjected to a unit concentrated source ˆMb  at a point x  and a unit 

concentrated source ˆ Mb  at a point k kxx e  with its components defined by 

ˆ ( ) ( )M
J JMb

   ξ ξ x  as illustrated schematically in Figure 2(b) where 

k kp px x , 11 22 33 1       and 0,ij i j   ; 1 1   and 2 1   ; the symbol 

JM  is defined such that 0 for JM J M  , 1 for 3( )JM J M k    ,3 [ ]k , 

otherwise 1JM  ; and Greek indices range from 1 to 2. Upon using both 

symmetry and anti-symmetry, fundamental solutions for state variable and body 
flux, denoted respectively by ( , )P

JU  ξ x  and ( , )P
iJS  ξ x , can be obtained as    

( , ) ( ) ( )P P K
J J PK JU U U

       ξ x ξ x ξ x                          (6) 

( , ) ( ) ( )P P K
iJ iJ PK iJS S S

       ξ x ξ x ξ x                           (7) 

where 1 2 1     and ( )P
JU ξ x  and ( )P

iJS ξ x  are fundamental solutions of 

the state variable and the body flux for a whole space under a unit concentrated 

source ˆ ( ) ( )P
J JPb   ξ ξ x . The explicit form of ( )P

JU ξ x  and ( )P
iJS ξ x  for 

certain classes of multi-field materials can be found in the work of [15]. Due to 
the singularity nature of ( )P

JU ξ x  and ( )P
iJS ξ x , ( , )P

JU  ξ x  and ( , )P
iJS  ξ x  are 

singular at ξ x  of (1 / )rO  and 2(1/ )rO  where || ||r  ξ x , respectively. 

4 Formulation of weakly singular integral equations 

By generalizing Somigliana’s identity to a half-space containing the surface of 
discontinuities and subjected to BC along with utilizing the fundamental solutions 
established in the previous section, it leads to a boundary integral relation for the 
state variable 

ˆˆ ˆ( ) ( , ) ( ) ( ) ( , ) ( ) ( ) ( )P P
P J J iJ i J

S S

u U t dA S n u dA  

 

    x ξ x ξ ξ ξ x ξ ξ ξ         (8) 
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Figure 2: Schematics of (a) half-space subjected to BC  and unit concentrated 

source ˆMb  at x and (b) whole space subjected to unit concentrated 

source ˆMb  at x and unit concentrated source ˆ Mb  at its image point 
x . 

where x  is any interior point of the half-space; ˆ ˆ ˆ( ) ( ) ( )J J Jt t t   ξ ξ ξ  and 

ˆ ˆ ˆ( ) ( ) ( )J J Ju u u   ξ ξ ξ  denotes the sum of the surface flux and the jump in the 

state variable across S+ and S–, respectively; and S ξ  and S ξ are two 
coincident points on the surface of discontinuities. It should be remarked that the 
reduction to integrals over a single surface S+ results directly from the continuity 
of the fundamental solutions ( , )P

JU  ξ x  and ( , )P
iJS  ξ x  at the field point ξ . By 

first computing the derivative of (8) to obtain the spatial gradient of ˆPu  with 

respect to ix  and then employing the constitutive relation (5), it yields a boundary 

integral relation for the body flux 

( , ) ( , )ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )
P P

J iJ
lK lKPq J lKPq i J

q qS S

U S
E t dA E n u dA

x x

 


 

 
   

  
ξ x ξ x

x ξ ξ ξ ξ ξ  (9) 

     From the relation (7) along with the properties of the fundamental solutions 
( )P

JU ξ x  and ( )P
iJS ξ x  for the whole space, the kernels ( , )/P

lKPq J qE U x ξ x  

and ( , )/P
lKPq iJ qE S x ξ x  appearing in the integral relation (9) can be obtained as 

( , )
( ) ( )

P
J PJ

lKPq lK JP lK
q

U
E S S

x



 


     

ξ x

ξ x x ξ                  (10) 

( , )
( ) ( )

P
lK lKiJ

lKPq iJ ia JB aB
q

S
E

x



  
       


ξ x

ξ x x ξ                 (11) 
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where ( ) ( )/lK P
iJ lKPq iJ qE S      ξ x ξ x . From the singularity of the function 

( )P
iJS ξ x , the kernels ( , )/P

lKPq J qE U x ξ x  and ( , )/P
lKPq iJ qE S x ξ x  are clearly 

singular at ξ x  of 2(1 / )rO  and 3(1/ )rO , respectively. By taking the limit of 

the boundary integral relation (8) to any point on the discontinuity surface, it yields 
a standard boundary integral equation for the sum of the state variable on the 
discontinuity surface. However, such integral equation is mathematically 
degenerate and not sufficient for solving all primary unknowns on the surface of 
discontinuities. To circumvent this difficulty, the boundary integral equation for 
the jump in the surface flux across the surface of discontinuities is employed. Such 
the integral equation can be derived from the boundary integral relation of the 
body flux (9) by taking the limit to any point on the surface S+. However, such 
conventional surface-flux integral equation still contains strongly singular and 
hyper singular kernels and requires some special numerical treatments. 
     To aid the regularization of the boundary integral relations (8) and (9), three 
kernels ( , )P

iJS  ξ x , ( , )/P
lKPq J qE U x ξ x  and ( , )/P

lKPq iJ qE S x ξ x  are decomposed 

into those suiting the integration by parts via Stokes’ theorem. The key component 
to achieve this essential task is based on the special decompositions of the kernels 

( )P
JU ξ x  and ( )P

iJS ξ x  for the whole space proposed by [15]: 

( ) ( ) ( )P P P
iJ iJ ism mJ

s

S H G



    


ξ x ξ x ξ x                          (12) 

( ) ( ) ( )lK tK
iJ iJKl ism lrt mJ

s r

E C  
 
 

      
 

ξ x ξ x ξ x                  (13) 

where ism  is an alternating symbol; 3( ) ( )/4P
iJ JP i iH x r     ξ x ; and 

( )P
mJG ξ x  and ( )tK

mJC ξ x  are weakly singular at ξ x  of (1 / )rO . By using 

(7), (10) and (11), and the decompositions (12) and (13), the kernels ( , )P
iJS  ξ x , 

( , )/P
lKPq J qE U x ξ x  and ( , )/P

lKPq iJ qE S x ξ x  admit the representations 

( ) ( , ) ( , )P P P
iJ iJ ism mJ

s

S H G  



  


ξ x ξ x ξ x                           (14) 

( , )
( , ) ( , )

P
J JJ

lKPq lK lrt tK
q r

U
E H G

x x


  

 
 
ξ x

x ξ x ξ                      (15) 

( , )
( ) ( ) ( , )

P
tKiJ

lKPq iJKl ia JP aPKl ism lrt mJ
q s r

S
E E E C

x x




      


  
      

  
ξ x

ξ x x ξ ξ x  (16) 

where the functions ( , )P
iJH  ξ x , ( , )P

mJG  ξ x  and ( , )tK
mJC ξ x  are defined by 

( , ) ( ) ( )P P K
iJ iJ PK iJH H H

      ξ x ξ x ξ x                         (17) 

( , ) ( ) ( )P P K
mJ mJ PK mJG G G

      ξ x ξ x ξ x                         (18) 
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( , ) ( ) ( )tK tK tK
mJ mJ ma JP aPC C C

      ξ x ξ x x ξ                       (19) 

     It is remarked that the kernels ( , )P
iJH  ξ x , ( , )P

mJG ξ x , and ( , )tK
mJC ξ x  are 

singular at ξ x  of 2(1 / )rO , (1 / )rO  and (1 / )rO , respectively. 

     To establish the singularity-reduced integral relations for the state variable and 
the body flux, the special decompositions (14)-(16) are first applied to the 
boundary integral relations (8) and (9). Then, certain integrals are integrated by 
parts via Stokes’ theorem. The final integral relations are given by 

ˆˆ ˆ( ) ( , ) ( ) ( ) ( , ) ( ) ( ) ( )

ˆ ˆ         ( , ) ( ) ( ) ( , ) ( )

P P
P J J iJ i J

S S

P P
mJ m J mJ J m

S S

u U t dA H n u dA

G D u dA G u d

  

  

 

 





   

   

 

 

x ξ x ξ ξ ξ x ξ ξ ξ

ξ x ξ ξ ξ x ξ
         (20) 

ˆˆ( ) ( , ) ( ) ( ) ( , ) ( ) ( )

ˆˆ           ( , ) ( ) ( , ) ( ) ( )

tK J
lK lrt mJ m J tK J

r S S

tK J
lrt mJ J m lK J

r S S

C D u dA G t dA
x

C u d H t dA
x

  

 

 

 

 

 

          
          

 

 

x ξ x ξ ξ x ξ ξ ξ

ξ x ξ x ξ ξ ξ

    (21) 

where ( ) ( )/m i ism sD n        is the surface differential operator and S   denotes the 

boundary of S  . For a typical case where the surface flux is fully prescribed on 
the discontinuity surface, both the sum of and the jump in the state variable are 
unknown a priori and the closure condition ˆ 0Ju   is satisfied on S  . The 

weak-form boundary integral equations for this particular case can be established 
as follows. By forming the limit S  x y  of (20) and (21) along with the 

closure condition, then multiplying the results by an arbitrary, smooth test 
function, and finally integrating certain integrals by parts via Stokes’ theorem, it 
leads to 

1 ˆˆ( ) ( ) ( ) ( ) ( , ) ( ) ( ) ( )
2

ˆ                                   ( ) ( , ) ( ) ( ) ( ) ( )

ˆ                                   ( ) ( , )
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P
P iJ i J
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P
P mJ m

t u dA t U t dA dA

t H n u dA dA

t G D

 





  

 



  

 

 

  

 

 





y y y y ξ y ξ ξ y

y ξ y ξ ξ ξ y

y ξ y ( ) ( ) ( )J

S S

u dA dA
 
  ξ ξ y

        (22) 
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                                    ( )
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       (23) 
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where Pt  and Ku  are smooth test functions; ˆ ˆ ˆ( ) ( ) ( )P P Pu u u     y y y ; and 

ˆ ˆ ˆ( ) ( ) ( )K K Kt t t     y y y . It is remarked that the test function Ku  is chosen to also 

satisfy the closure condition, i.e. 0Ku   on S  . In addition, both the weak-form 

boundary integral equations (22) and (23) contain only weakly singular kernels of 
(1 / )rO and are sufficient for determining the unknown state-variable data on the 

surface of discontinuity, i.e. ˆPu  and ˆJu . 

5 Solution procedure 

The weak-form boundary integral equation for the surface flux (23) contains the 
prescribed information K̂t

  and Ĵt  and is clearly independent of the unknown 

data ˆPu . This equation is solved first to obtain the unknown jump ˆJu  and this 

can be accomplished by utilizing standard, weakly singular, symmetric Galerkin 
boundary element method (e.g. [8, 14]). Various components such as the 
discretization, approximation of the near-front field, singular and nearly singular 
double surface integrations, and the numerical evaluation of kernels are properly 
considered to significantly enhance the accuracy and computational efficiency of 
the numerical technique. Once the data ˆJu  is determined, it supplies (22) as the 

known information in addition to Ĵt . The sum of the state variable ˆPu  can, 

therefore, be obtained by solving the weak-form equation (22) using standard 
Galerkin method. It is apparent from the above solution procedure and the form of 
the integral equations that the discretization of (22) and (23) leads to two 
symmetric systems of linear algebraic equations. 
     Once ˆPu  and ˆJu  are determined, the state variable and the body flux at any 

interior point of the body can readily be obtained from the boundary integral 
relations (20) and (21), respectively. Other essential data such as the intensity 
factors contained in the singular term and the first non-singular term in the 
expansion of the body flux in the neighborhood of the boundary of discontinuity 
surface can also be extracted. In particular, techniques analogous to those 
proposed by [15] and [16] are employed along with the solved data ˆJu and ˆPu  

to compute the intensity factors and the first non-singular term, respectively. 

6 Numerical results 

As a means for verifying the integral formulation and the implemented solution 
procedure, a set of boundary value problems under various scenarios are solved 
and results, when benchmarked with reliable reference solutions, exhibit good 
agreement. To demonstrate both the accuracy and the convergence of the proposed 
technique, results of a representative problem associated with linear elasticity (i.e. 
 = 1 and  = 0) is only presented, here, for brevity. 
     Consider a penny-shaped crack of radius a and oriented vertically in a half-
space with a depth h (measured from the center of the crack to the free surface) as 
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shown in Figure 3(a). The half-space is made of a homogeneous, transversely 
isotropic, linearly elastic material with independent, relative elastic constants 
given by E1111 = 16.09, E1122 = 3.35, E1133 = 5.01, E3333 = 6.10, and E1313 = 3.83. 
The crack is subjected to uniform normal traction 0  as shown in Figure 3(b) and 

the crack front is parameterized by 1 2 30, sin , cosx x a x h a      for 

[0,2 ]  . In the analysis, three meshes are adopted as illustrated in Figure 3(c) 

and the ratio h/a = 1.25 is employed. The computed stress intensity factors and T-
stresses are first normalized and then compared with the reference solution 
(generated from an equivalent whole space containing a pair of geometrically 
symmetrical cracks with respect to the plane 3 0x  and subjected to the 

symmetrical loading condition for BC1 and the anti-symmetrical loading condition 
for BC2) as shown in Figures 4 and 5, respectively. It can be seen from this set of 
results that numerical solutions obtained from the proposed technique are highly 
accurate and weakly dependent on the level of mesh refinement. In particular, 
results generated by the coarse and intermediate meshes are nearly 
indistinguishable from the benchmark solutions. This high quality of numerical 
solutions results directly from the use of special interpolation functions (e.g. [8, 
14]) to capture the near-front relative crack-face displacement. 
 

 

Figure 3: (a) Vertical penny-shaped crack in half-space, (b) crack under 
uniform normal traction, and (c) three meshes adopted in the analysis. 

7 Conclusions 

A set of singularity-reduced boundary integral relations/equations has been 
established for a half-space containing a surface of discontinuities and subjected 
to symmetrical and anti-symmetrical boundary conditions on the free surface. The 
present work has offered not only the formulation derived in a sufficiently broad  
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Figure 4: Normalized stress intensity factors for vertical penny-shaped crack. 

 

Figure 5: Normalized T-stresses for vertical penny-shaped crack. 

framework allowing the treatment of various multi-field boundary value problems 
but also an efficient and accurate numerical procedure for the analysis of a half-
space containing cracks and discontinuities. An extensive numerical study has 
confirmed that the proposed numerical scheme is highly accurate, computationally 
efficient, and robust. It should be remarked that the half-space considered in the 
present study is a reduced problem of a whole space possessing a plane of 
symmetry or anti-symmetry. As a result, the number of degrees of freedom can be 
reduced by a half if the proposed technique is employed. In addition, results 
established in the present study are fundamental and essential for the development 
of singularity-reduced boundary integral equations to treat other types of boundary 
conditions on the surface of the half-space. 
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