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Abstract 

For thin structures immersed in water, a full interaction between the structural 
domain and the fluid domain needs to be taken into account. In this work, the finite 
element method (FEM) is used to model the structure parts, while the  
boundary element method (BEM) is applied to the exterior acoustic domain. A 
coupling algorithm based on FEM and the wideband fast multipole BEM 
(FEM/Wideband FMBEM) is used for the simulation of acoustic-structure 
interaction. The Burton–Miller formulation is used to overcome the fictitious 
frequency problem when using a single Helmholtz boundary integral equation for 
exterior boundary-value problems. Structural-acoustic design sensitivity analysis 
is performed based on the coupling formulation. The design variable can be chosen 
as the material parameters, structure and fluid parameters, such as the fluid density, 
structural density, Poisson’s ratio, Young’s modulus, structural shape size and so 
on. Furthermore, the impact of sound-absorbing material on the scattering problem 
for structures underwater is researched. The acoustic admittance of the sound-
absorbing material has also been chosen as the design variable for the sensitivity 
analysis. Numerical example is presented to demonstrate the validity and 
efficiency of the proposed algorithm. 
Keywords: finite element method, fast multipole boundary element method, fluid-
structure interaction, design sensitivity analysis, sound-absorbing material. 
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1 Introduction 

Analysis of the acoustic radiation or scattering from elastic structure in fluid is a 
classical problem of underwater acoustics. Analytical solutions to the acoustic 
fluid-structure interaction problems are only available when the structure has 
simple geometry with simple boundary conditions [1]. For more complicated 
problems, it is impossible to find analytical solutions, and thus necessary to create 
efficient numerical methods. A suitable approach for the analysis of fluid-structure 
interaction problems is the coupled FEM/BEM [2, 3]. But the coupling analysis 
based on FEM/Conventional BEM (CBEM) algorithm still represents the 
bottleneck of large computation cost, because the CBEM produces a dense and 
non-symmetrical coefficient matrix which induces O(N3) arithmetic operations to 
solve the system of equations directly, such as by using the Gauss elimination 
method. The fast multipole method (FMM) [4–8] has been presented to accelerate 
the solution of the CBEM system of equations and to decrease the memory 
requirement. The wideband FMM [9–11] could work accurately and efficiently at 
all frequencies. On the other hand, the implementation of a single Helmholtz 
boundary integral equation may have the difficulty of non-uniqueness for exterior 
boundary-value problems. The Burton–Miller method [12] could effectively 
overcome the non-unique solution problem. In this paper, the coupling algorithm 
FEM/Wideband FMBEM [13] is applied to solve the structural-acoustic 
interaction problems. 
     The sound-absorbing material has been widely used to decrease noise radiation. 
Special effort is devoted to numerically obtain the absorption coefficient and 
acoustic conductance. For the generalization of the boundary conditions [14], the 
acoustic admittance  could be introduced, which tends to be zero at perfectly 
reflecting boundaries like a rigid wall [15]. On the other hand, for non-reflecting 
boundary conditions, =1. The admittance could also be replaced by impedance 
which is defined as it’s reciprocal. In this work, the acoustic admittance  is 
introduced to extend the coupling algorithm FEM/Wideband FMBEM for the 
structural-acoustic interaction analysis with sound-absorbing material. 
     Passive noise control by modification of structure geometry moves more and 
more into the field of vision for designers. This structural-acoustic optimization 
shows high potential in minimization of radiated noise especially for thin shell 
geometries [16]. Acoustic design sensitivity analysis can provide information on 
how the geometry change affects the performance of the structure, so it is an 
important step. The coupling algorithm FEM/Wideband FMBEM has been applied 
to structural-acoustic sensitivity analysis based on the direct differentiation 
method [13]. In this paper, FEM/Wideband FMBEM is applied to the structural-
acoustic sensitivity analysis with sound-absorbing material based on the finite 
difference method. The design variable could be set as the fluid density, structural 
density and so on. The formulation of sound pressure sensitivity for fluid-structure 
interaction is derived. A numerical example is presented to demonstrate the 
validity and efficiency of the proposed algorithm. 
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2 Structural-acoustic formulations 

2.1 FEM formulations 

Assuming that a harmonic load with the excitation frequency  is applied to the 
structure, the steady-state response can be calculated from the frequency-response 
analysis. The linear system of equations for the computation of the nodal 
displacement u is derived by: 

2( ) ,i    K C M u Au f                                   (1) 

in which 1i   , K is the stiffness matrix, C is the damping matrix, M is the 
mass  matrix, and u is the nodal displacement vector.  Taking  into  account 
the acoustic pressure on the structure surface,  an acoustic load  fp is applied along 
with the structural load  fs, and the excitation can be expressed as: 

,s p s sf   f f f f C p                                       (2) 

and the coupling matrix Csf can be expressed as: 

,
int

T
sf s f intS

dS  N nNC                                         (3) 

in which Ns and Nf denote the global interpolation functions for the structure and 
fluid domains, respectively, n is the surface normal vector, and Sint is the 
interaction surface. By substituting equation (2) into equation (1), we can obtain 
the following formulation: 

1 1 .s sf
  u A f A C p                                           (4) 

2.2 BEM formulations 

Consider the Helmholtz equation governing a time-harmonic acoustic wave field: 
2 2( ) ( ) 0, ,p x k p x x                                     (5) 

in which p is the acoustic pressure, k is the wave number and k=/c,  is the 
angular frequency, and c is the wave speed in the acoustic medium . 
     Reformulating the Helmholtz equation, we can get a boundary integral equation 
which is defined on the structure boundary S: 

( , ) ( ) ( ) ( , ) ( ) ( ) ( ) ( ) ( ),iS S
G x y q y dS y F x y p y dS y c x p x p x         (6) 

in which x is the source point, y is the field point, the coefficient c(x) is equal to 
1/2 when the boundary S is smooth around the point x, pi(x) is the incident wave, 
G(x,y) is the Green’s function, q(y) and F(x,y) are the normal derivatives of p(y) 
and G(x,y), respectively. As for three dimensional acoustic wave problems, G(x,y) 
and F(x,y) are given as: 
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( , ) ,
4π

ikre
G x y

r
                                                (7) 

2( , ) ( 1) ,
( )4π

ikre r
F x y ikr

n xr


 


                                 (8) 

in which r is the distance between the source point x and the field point y. Dividing 
the boundary S into N elements, collecting the equations for all the collocation 
points located at the center of each element and expressing them in matrix form, 
we can get the linear algebraic equations, as follows: 

+ .iHp Gq p                                                   (9) 

     For Burton–Miller method, one can get the same form of last discretized 
formulation [13]. 

2.3 FEM/BEM coupling formulations 

Assuming that the structure surface is coated with sound-absorbing material which 
is too thin to affect the structural stiffness matrix or mass matrix, q in equation (9) 
could be expressed as: 

1 2. q q q                                                  (10) 

After applying the impedance boundary condition and the continuity boundary 
condition across the interaction surface respectively, q1 and q2 in equation (10) 
could be given as: 

1 ,ik
 


p
q p

n
                                             (11) 

2 1
2 ,f s f fsi     q v S C u                                 (12) 

in which  is the acoustic admittance, 
int

T
f f intS

dS S N N  and T
fs sfCC . 

     By combining equations (10)–(12) and substituting the combined equation into 
equations (9), we can get the following formulation: 

2 1( )+ .f fs iik    Hp G p S C u p                             (13) 

     Combining equation (1) and equation (13), the coupled system of equations 
could be expressed as: 

2 1 .
sf s

if fs ik  

    
            

A C fu

ppGS C H G
                    (14) 

     Direct iterations of equation (14) converge very slowly, and it takes 
considerable time and storage requirement to solve the system equations directly. 
It’s also very difficult to obtain the numerical solutions with high accuracy. Instead 
of solving the non-symmetric linear equations by using an iterative solver, we 
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propose the next approach. By substituting equation (4) into equation (13), we can 
obtain the coupled boundary element equation, as follows: 

( ) ,sf i sik   H G p GWC p p GWf                         (15) 

in which 2 1 1
f fs   W S C A . Directly solving the term A-1Csfp in equation (15) 

could consume considerable time. In this paper, we use the fast multipole method 
and the iterative solver generalized minimal residual method (GMRES) to 
accelerate the calculation of the solution to the coupled boundary element system 
equation. Assuming the current iterative solution to be pk, by calculating Csf pk, we 
can get a new vector b= Csf pk. Then, the solution A-1b could be efficiently obtained 
when using a sparse direct solver to solve the linear equation Ax=b, in which 
A-1b=x. The term A-1fs in equation (15) could be calculated similarly. 

3 Acoustic design sensitivity analysis 

Equation (14) could be expressed as: 

2 1 .
sf s

if fs ik  

      
                 

A C fu u
B

pp pGS C H G
             (16) 

     By differentiating equation (16) with respect to the design variable, we can 
obtain the following formulation: 

1

2

,
  

    
   




ru
B r

rp
                                           (17) 

in which 

.s

i

   
    

  





uf

r B
pp

                                          (18) 

     For different design variables, different expressions of B  could be obtained. 

When the fluid density f is chosen as the design variable, B  could be expressed 
as: 

2 1 ,
fs 

 
    
 0 0
B

GS C 0
                                     (19) 

and the vector r could be expressed as: 

1
2 1

2

.
fs 

        
    

0r
r

r GS C u
                                  (20) 

     When the structural parameter is chosen as the design variable, such as the 
structural density s,  Poisson’s  ratio ,  Young’s  modulus E or the thickness of  

the shell h presented in the numerical example, B  could be expressed as: 
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,
 

  
 


 A 0
B

0 0
                                               (21) 

and the vector r could be expressed as: 

1

2

.
  

    
   

r Au
r

r 0
                                          (22) 

     When the parameter which determines the structural nodal coordinates is 
chosen to be the design variable, such as the radius of the spherical shell in the 

numerical example, B  could be expressed as: 

2 1
,

( )

sf

f fs ik  

 
 
   

 



.

A C
B

GS C H G
                           (23) 

in which the upper dot ( )
.

 denotes the differentiation with respect to the design 

variable. The vector r could be expressed as: 

1

2 12

.
( ) ( )

s sf

i f fs ik  

         
      

  


.

f Au C pr
r

r p GS C u H G p
            (24) 

     When the acoustic admittance  is set as the design variable, B  could be 
expressed as: 

,
ik

 
   
 0 0
B

0 G
                                            (25) 

and the vector r could be expressed as: 

1

2

.
ik

   
    

  

r 0
r

r Gp
                                        (26) 

     In the equations shown above, the differentiation of the matrices could be very 
complicated and difficult. However, the semi-analytical derivative method, 
through which variations of the coefficient matrices could be calculated using the 
finite difference method, can be used to solve this problem. For example, matrix 
D  could be calculated using a small perturbation  when the design variable is 

denoted by , as follows: 

( ) ( )
.

  


 
 D D

D                                       (27) 

     In this paper, we use the step size /=1e-3. Directly solving equation (17) 
could be quite inefficient because the system matrix will be very large in realistic 
problems. Reformulating equation (17), we can obtain the following equations: 

118  Boundary Elements and Other Mesh Reduction Methods XXXVIII

 
 www.witpress.com, ISSN 1743-355X (on-line) 
WIT Transactions on Modelling and Simulation, Vol 61, © 2015 WIT Press



1 ,sf  r Au C p                                             (28) 

2 1
2 ( ) .f fs ik      r GS C u H G p                           (29) 

     By substituting equation (28) into equation (29), the new formulation could be 
obtained, as follows: 

1 2( ) .sfik    H G p GWC p GWr r                          (30) 

     By solving the above equation, the sensitivity of the nodal sound pressure on 
the surface could be obtained. We can solve the unknown vector u  by substituting 
the solution of the vector p  into equation (28) and solving it. 

4 An example of scattering from an elastic spherical shell 

In this example, we consider the acoustic scattering of a plane incident wave with 
a unit amplitude on a spherical shell centered at point (0, 0, 0) with radius  
r=1.0 m, with the wave travelling along the positive x axis, as shown in figure 1. 
For the spherical shell, the density is 7860 kg/m3, Young’s modulus is 210 GPa, 
Poisson’s ratio is 0.3, thickness is 0.01 m. For the fluid, the density is 1000 kg/m3, 
speed of sound is 1482 m/s. 
 

 

Figure 1: Scattering from a spherical shell with radius r. 

     Figures 2–4 give the analytical and the numerical solutions for the pressure 
sensitivity analysis at point (2r, 0, 0), where the design variable is chosen to be the 
fluid density f, Young’s modulus E and radius r, respectively. These figures show 
that the scattered sound pressure remains rather insensitive in the low frequency 
range, and the sensitivity increases rapidly in the vicinity of resonance peaks. The 
numerical solution is in agreement with the analytical solution, which indicates 
the validity of the proposed algorithm and its correct implementation. 
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Figure 2: Sound pressure sensitivity with respect to fluid density f. 

 
 
 

 

Figure 3: Sound pressure sensitivity with respect to Young’s modulus E. 
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Figure 4: Sound pressure sensitivity with respect to radius r. 

     Figure 5 shows the scattered pressure sensitivity with respect to the acoustic 
admittance  at 50 Hz, where the computing points are located in a circle centered 
at point (0, 0, 0) with radius 2r. The figure shows that the scattered sound pressure 
sensitivity varies slightly at different points. 
 

 

Figure 5: Sound pressure sensitivity with respect to acoustic admittance . 
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     The CPU time used to calculate the acoustic pressure at point (2r, 0, 0) is given 
in figure 6, in which BEM and FMBEM denote the solutions calculated by CBEM 
and FMBEM algorithm when interaction between fluid and structure is not 
considered (rigid analysis). We can see from the figure that elastic analysis 
requires much more time than rigid analysis. It can also be seen that the 
FEM/FMBEM algorithm shows high efficiency for three dimensional fluid-
structure interaction analysis and sensitivity analysis. 
 
 

 

Figure 6: CPU time consumed to calculate the sound pressure with f=50Hz at 
point (2r, 0, 0). 

5 Conclusions 

A coupling algorithm based on FEM and BEM is presented for the simulation of 
fluid-structure interaction and structural acoustic sensitivity analysis using the 
direct differentiation method, in which several parameters are chosen as the design 
variable, e.g. Young’s modulus, structural thickness, the acoustic admittance. For 
different design variables, the different formulations are presented for the 
calculation of the derivatives to the sound pressure. A numerical example is 
presented to demonstrate the validity of the proposed algorithm. The algorithm 
presented in this paper makes it possible to predict the effects of different design 
variables on the scattered sound field numerically. Future work will include 
applying the structural-acoustic design sensitivity analysis to optimize and 
extending the method to practical engineering problems. 
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