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Abstract 

In the development of finite element method (FEM), the patch test is required. We 
may wonder whether we need any special test for the boundary element method 
(BEM). A sufficient and necessary boundary integral equation method (BIEM) to 
ensure a unique solution is our concern. In this paper, we revisit this issue for the 
interior two-dimensional (2-D) elasticity problem and investigate the equivalence 
of solution space between the integral equation and the partial differential 
equation. Based on the degenerate kernel and the eigenfunction expansion, the 
range deficiency of the integral operator of the single-layer potential for the 
solution space in the degenerate-scale problem for the 2-D elasticity in the BIEM 
is analytically studied. Following the Fichera’s idea, we enrich the conventional 
BIEM by adding constants and corresponding constraints. In addition, we 
introduce the concept of modal participation factor (MPF) to examine whether the 
adding term of the rotation is required for interior simply-connected problems. 
Finally, a simple example of the degenerate-scale problem containing an elliptical 
boundary subjected to various boundary conditions of the rigid body translation 
and rotation for 2-D elasticity problems was demonstrated by using the necessary 
and sufficient BIEM. 
Keywords: boundary integral equation, boundary element method, Fichera’s 
method, degenerate scale, degenerate kernel. 
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1 Introduction 

It is well known that the boundary integral equation method (BIEM) and the 
boundary element method (BEM) are widely used to solve engineering problems. 
Nevertheless, mathematical models of the integral equation for engineering 
problems are not equivalent for the solution space to those of the partial differential 
equations (PDE) as pointed out by Feng [1] and Yu [2]. A degenerate scale [3] as 
a well-known   contour problem in the BEM has been noticed for a long time. In 
the past experience of solving the Laplace problem [4–6], the main key of the 
BEM was the fundamental solution containing the base of lnr. Even though in the 
2-D elasticity problem, the degenerate scale also exists in the BEM/BIEM [7–11]. 
The occurring mechanisms of two problems, Laplace and Navier, are similar due 
to the lnr term. However, there are two degenerate scales for elasticity problems 
instead of only one for Laplace problems. In the literature, there are various 
regularized methods to deal with the degenerate-scale problem for 2-D Laplace 
problems [3, 4, 12]. Recently, Chen et al. [3, 13] used the Fichera’s method by 
adding the free constant term and the corresponding constraint to transform an ill-
posed system to a well-posed system through the analytical derivation by using 
the degenerate kernel and Fourier series. A necessary and sufficient BIE obtained 
from this approach was derived to avoid the non-uniqueness solution for Laplace 
problems. However, it is interesting that Hu et al. [14] and He et al. [10] who 
proposed that both a translation term and a rotation term were required for 2-D 
elasticity problems. It is different from the Fichera’s method [15] which adds the 
free constant and the corresponding constraint. Therefore, we may wonder 
whether the rotation term is needed or not for the interior problem. 
     In this paper, we use the degenerate kernel instead of the closed-form 
fundamental solution to derive the analytical degenerate scale and field response 
for the isotropic elasticity problem containing an elliptical boundary. By way of 
the analytical derivation, the range deficiency of the solution space is found and 
we find that a constant term could not appear in case of a degenerate scale. It means 
that the integral equation is not equivalent to the partial differential equation for 
the solution space. In the linear algebraic system, the singular value decomposition 
(SVD) and the modal participation factor (MPF) are used to study the contribution 
of the singular vector corresponding to the zero singular value for various 
boundary conditions. Through the analytical derivation and numerical 
implementation, we find that the extra rotation term in [10, 16] may not be needed 
for degenerate-scale problems. It is well known that FEM code was examined by 
using the patch test to solve a simple example of constant strain case. Similarly, 
the BEM code should be checked by using a more simple solution of the rigid 
body translation and rotation. Since the conventional BEM/BIEM fails to solve 
the degenerate-scale problem, we propose the necessary and sufficient 
BEM/BIEM to deal with this problem. An example of the degenerate-scale 
problem containing an elliptical boundary for 2-D elasticity is demonstrated by 
using the necessary and sufficient BEM/BIEM. 
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2 Problem statement and formulation 

For simplicity, the medium is considered to be linearly elastic, isotropic and 
homogenous. The governing equation is the Navier equation as follows: 

2( ) ( ( )) ( ) 0 ,G u G u D       x x x
  

,                          (1) 

where ( )u x


 is the displacement of the field point x, D is the domain of interest, 
2  is the Laplace operator,   and G are the Lamé constants for the isotropic 

elasticity. The integral representation of single-layer potential for the solution 
yields 

( ) ( , ) ( ) ( ),i ij jB
u U dB D x x s s s x ,                               (2) 

where ( , )ijU x s  is the fundamental solution for the displacement response of the 

ith direction at the field point x due to a concentrated load of the jth direction at 
the source s and ( )j s  is the unknown boundary density. The explicit form of 

( , )ijU x s , or the so-called Kelvin solution, is 

2
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where ij  is the Kronecker delta,   is the Poisson ratio ( 2( )G    ), 

3 4   , r  x s , i i iy x s  , 1, 2i   and 1, 2j   for the plane elasticity. 

     To provide a test for the BEM, we design an exact solution containing the 
constant term and the rotation term as shown below: 

    1 1 2( ) 1 cos 1 sin ,r ru x x D     x x ,                       (4) 

    2 1 2( ) 1 sin cos 1 ,r ru x x D     x x ,                       (5) 

where  1 2x ,xx  is the field point and r  is the angle of the rigid body rotation. 

The boundary conditions are 

( ) ( ) , , 1,2i if u B i  x x x ,                                     (6) 

where B is the boundary of domain. 

3 Derivation of the analytical solution for an elliptical  
domain by using the BIEM in conjunction with the  
degenerate kernel 

For an elliptical-domain problem, we derive the analytical solution for the case of 
the rigid body translation and the rigid body rotation by using the BIEM in 
conjunction with the degenerate kernel [17] in terms of the elliptic coordinates. 
The distribution of field points is shown in figure 1. The source point s and the 
collocation point x are expressed by ( , )   and ( , )  , respectively. The 
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unknown boundary densities ( )j s  and the given boundary conditions ( )if x  

along the boundary can be expressed by using the eigenfunction expansion as 
shown below: 

( ) ( ) ( )
0

1

1
( ) ( cos( ) sin( )), 0 2 , 1,2j j j

j n n
ns

a a n b n j
J
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where, ( )
0

ja , ( )j
na  and ( )j

nb , are unknown coefficients, the coefficients, ( )
0

ip , ( )i
np  

and ( )i
nq , are determined by the specified boundary conditions, and the Jacobian 

term is 2 2sinh sinJ c   s . By using the degenerate kernel in terms of the 

elliptic coordinates [17],  the coefficients  of  the  eigenfunction  representation  of  
the boundary densities could be obtained as follows [18]: 

(1) (1)
0 0

8 (1 )
2

2 ln
2

G
a p

a b a
a b








     

,                                 (9) 

 

(1) (2)

(1)

sinh( )
2 2sinh(2 )

8 1 , 1
sinh(2 )

1
sinh(2 )

n nn

n

n n n
p q

e
a G v n

n
n




 
 





 
   

   
 

 
 

,           (10) 

 

(1) (2)

(1)

cosh( )
2 2sinh(2 )

8 1 , 1
sinh(2 )

1
sinh(2 )

n nn

n

n n n
q p

e
b G v n

n
n




 
 





 
   

   
 

 
 

,           (11) 

(2) (2)
0 0

8 (1 )
2

2 ln
2

G
a p

a b b
a b








     

,                                (12) 

 

(2) (1)

(2)

sinh( )
2 2sinh(2 )

8 1 , 1
sinh(2 )

1
sinh(2 )

n nn

n

n n n
p q

e
a G v n

n
n




 
 





 
   

   
 

 
 

,           (13) 

 

(2) (1)

(2)

cosh( )
2 2sinh(2 )

8 1 , 1
sinh(2 )

1
sinh(2 )

n nn

n

n n n
q p

e
b G v n

n
n




 
 





 
   

   
 

 
 

.           (14) 

90  Boundary Elements and Other Mesh Reduction Methods XXXVIII

 
 www.witpress.com, ISSN 1743-355X (on-line) 
WIT Transactions on Modelling and Simulation, Vol 61, © 2015 WIT Press



where a and b are the lengths of the semi-major axis and the semi-minor axis of 
the elliptical domain, respectively. It is found that the coefficients of the constant 
term ( (1)

0a  of equation (9) and (2)
0a  of equation (12)) could not be determined due 

to the zero denominator when a degenerate scale occurs, 

2
2 ln

2

a b a

a b
      

,                                         (15) 

or 

2
2 ln

2

a b b

a b
      

.                                         (16) 

 

 

Figure 1: The sketch of the problem. 

     However, the coefficients of the rotation term ( (1)
1a  of equation (10), (1)

1b  of 

equation (11), (2 )
1a  of equation (13) and (2)

1b  of equation (14)) could be 

determined for any scale. That is to say that the single-layer integral operator is 
range deficient by the constant term only. After derivation of the above elliptical 
case, we found that the range of the integral operator is only short of the constant 
term instead of the rotation term when the size of the domain is a degenerate scale. 
According to the Fredholm alternative theorem, we obtain the infinite solution 

when ( ) ( ) 0iB
f dB  x s , or no solution when ( ) ( ) 0iB

f dB  x s . In other words, 

the conventional single-layer potential BIEM is not sufficient (infinite solutions) 
and not necessary (no solution) to ensure a unique solution for a degenerate-scale 
problem. 

4 Regularized methods for a degenerate-scale problem 

4.1 Necessary and sufficient BEM/BIEMs for 2-D elasticity problems 

According to the above analytical result, it is found that only the coefficients of 
the constant term could not be determined due to the zero denominator when the 
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size of the domain is a degenerate scale of equation (15) and equation (16). Range 
deficiency by a constant term for the solution space appears. However, the 
coefficients of the rotation term and other higher order terms can be determined 
for any size of the elliptical domain. Therefore, the range deficiency of the BIE 
only occurs in the constant term in case of a degenerate scale. Following the past 
experience of solving the Laplace problem, we introduce Fichera’s idea to solve 
the degenerate-scale problem. We enrich the range of the integral operator by 
adding constants ic  and the corresponding constraints to enforce the indeterminate 
constant term of the boundary densities to be zero. The necessary and sufficient 
BEM/BIEM could be written as follows: 

( ) ( , ) ( ) ( ) ,i ij j iB
u U dB c D  x x s s s x ,                          (17) 

( ) ( ) 0i
B

dB  s s .                                           (18) 

     Equation (17) and equation (18) are different from Hu’s necessary and 
sufficient BIEs [14] which contains a more rotation term and one more constraint 
as shown below: 

( ) ( , ) ( ) ( ) ,i ij j i ijk j kB
u U dB c x e D     x x s s s x

 
,                (19) 

( ) ( ) 0 , , 1, 2j
B

dB B j    s s s ,                               (20) 

( ) ( ) 0 ,
B

dB B    s s s s ,                                    (21) 

where   is the unknown rotation term and (0,0,1)e 


 for the 2-D case. 

4.2 Modal participation factor to examine the numerical instability 

According to the analytical derivation, we can find that the adding rotation term 
in Hu’s BIEs may not be necessary for a degenerate-scale problem of 2-D elasticity. 
In the linear algebraic system, we employed the SVD technique to find the MPF 
of the near-zero minimum singular vector due to a degenerate scale. By using the 
SVD technique, the influence matrix A  could be decomposed as 

T T
n n n

n

   A
 

,                                    (22) 

where n


, n


 and n  are the nth left singular vector, the nth right singular vector 

and the nth singular value, respectively. When the rank deficiency exists in the 
influence matrix, the minimum singular value approaches zero. After the boundary 
element discretization, equation (2) could be expressed as follows: 

f U
 

,                                                   (23) 

where 


 and f


 are the vectors of the boundary densities and the boundary 

conditions, respectively. The boundary densities and boundary conditions could 
be expanded by 
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n n
n

   
,                                               (24) 

n n
n

f  
 

.                                                (25) 

     Following the MPF in the structural dynamics, the MPF ( n ) with respect to 

n


 is defined by 

T
n n f 
 

.                                                 (26) 

     According to equations (43), (45) and (46), equation (44) could be expressed 
as follows: 

n n n   .                                                  (27) 

     The coefficients of the boundary densities could be expressed as shown below: 

n
n

n

  .                                                 (28) 

     When the influence matrix U  is a singular matrix, the minimum singular value 
is near zero in the numerical implementation. Therefore, the coefficients of the 
boundary densities could not be easily determined due to the numerical instability. 
Once n  is zero, it means that there is no contribution for the numerical instability 
of n  for the mode of near-zero singular value ( n ). 

5 An illustrative example 

For a degenerate-scale problem containing an elliptical boundary, two different 
degenerate scales are given in equation (15) and equation (16). The exact solution 
of displacement field is given by equation (4) and equation (5), subjected to the 
boundary conditions of equation (6), where the angle of rotation ( r ), the Lamé 
constants G  and   are given as 30°, 1.0 and 0.25, respectively. 
     When the size of the elliptical domain is a degenerate scale, the constant terms 
could not be determined according to the analytical derivation as given in equation 
(9) and equation (12). Therefore, the constant term of the solution space is 
deficient. In figure 2 and figure 3, the numerical result by using the conventional 
BEM is also unreasonable, where the number of boundary elements is 100, the 
minimum singular values of the influence matrix are 62.9 10  and 63.6 10  
corresponding to two degenerate scales, b = 0.930785701 and b = 0.787891333, 
respectively. Since the reasonable displacement in the degenerate-scale problems 
could not be obtained by using the conventional BEM/BIEM, we employed the 
Fichera’s idea and proposed an enriched formulation by adding constants and 
corresponding constraints to improve the conventional BEM/BIEM. 
     This regularization approach, the necessary and sufficient BEM/BIEM, was 
also used to solve the problem. The results are more accurate than those obtained 
by using the conventional BEM/BIEM as shown in figure 2 and figure 3. We can  
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(a) The displacement 1( )u x  by using 

the conventional BEM 

(c) The displacement 1( )u x   by using 

the present method 

  

(b) The displacement 2 ( )u x  by using 

the conventional BEM 

(d) The displacement 2 ( )u x  by using 

the present method 

Figure 2: The results of the degenerate-scale case (b=0.9307857017) for an 
elliptical domain. 

successfully solve the degenerate-scale problem even if the rotation term is not 
enriched in the regularized method. 
     In order to understand the MPF for various boundary conditions, we examine 
two cases of an ellipse. One is the rigid body translation as given by 

( ) 1, 1,2if i x                                             (29) 

and the other is the rigid body rotation as given by 

    1 1 2( ) cos 1 sinr rf x x   x                               (30) 

    2 1 2( ) sin cos 1r rf x x   x                               (31) 

where the angle of rotation is 30°, the size of domain is a degenerate scale (b = 
0.787891333). The results for various boundary conditions by using the BEM are  
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(a) The displacement 1( )u x   by using 

the conventional BEM 

(c) The displacement 1( )u x  by using 

the present method 

  

(b) The displacement 2 ( )u x  by using 

the conventional BEM 

(d) The displacement 2 ( )u x  by using 

the present method 

Figure 3: The results of the degenerate-scale case (b=0.7878913330) for an 
elliptical domain. 

shown in figure 4. The numerical results are unreasonable for the case of the rigid 
body translation. In contrast, numerical results are acceptable for the case of the 
rigid body rotation. Therefore, we may wonder why the numerical results 
approach the exact solutions in the ill-posed system when the size of domain is a 
degenerate scale. We employed the SVD technique to find the MPF of the mode 
for the near-zero minimum singular value. 
     When the number of boundary elements is 20, the minimum singular value of 
the influence matrix is 66.3 10  in this case. The MPFs of the mode for the 

singular values are shown in figure 5, where (1)
n  and (2)

n  are the nth MPFs 

corresponding to the nth singular value for the case of the rigid body translation 
and the case of the rigid body rotation, respectively. When the size of the elliptic 
domain is the degenerate scale (b = 0.787891333), the MPFs corresponding to the 
near-zero minimum singular value ( 6

1 6.3 10   ) are (1)
1 4.34859    and  
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(a) The displacement along the 1x  

direction (rigid body translation) 

(c) The displacement along the 1x  

direction (rigid body rotation) 

  

(b) The displacement along the 2x  

direction (rigid body translation) 

(d) The displacement along the 2x  

direction (rigid body rotation) 

Figure 4: The results of the degenerate-scale case (b=0.7878913330) for an 
elliptic domain subjected to two boundary conditions by using the 
conventional BEM. 

 
(2)

1 0  . Two different MPFs are used to explain why the results of the 

displacement solution fail by using the conventional BEM to solve the degenerate-
scale problem if the solution contains the constant term. However, results of the 
degenerate-scale problem subject to the condition of the rotation are acceptable. 
     The aforementioned example including the boundary conditions of the rigid 
body translation or rotation is very simple for 2-D elasticity problems. However, 
the conventional BIEM fails to solve because the mathematical model of integral 
equation formulation is not complete. This simple test (rigid body translation) is 
used to examine the sufficient and necessary BIEM to ensure a unique solution as 
the patch test (constant strain) for the FEM. 
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(a) Boundary condition of a rigid 
body translation 

(b) Boundary condition of a rigid 
body rotation 

Figure 5: The modal participation factors for various boundary conditions when 
the size of an ellipse is the degenerate scale (b=0.7878913330). 

6 Conclusions 

A simple test of the BEM/BEIM for the rigid body translation and rotation 
problems was proposed in this paper. An example with the specified rigid body 
displacement boundary condition is the basic test for the BIEM/BEM as the patch 
test for the FEM. Two tests are compared in table 1. For the degenerate scale of 
the 2-D elasticity problem, we revisited the issue of the sufficient and necessary 
BIEs. We examined the role of the adding rotation term in Hu’s sufficient and 
necessary BIEs for the degenerate-scale problem by using the degenerate kernel 
and the MPFs. Based on analytical results, the range deficiency only occurs in the 
constant term of the solution space instead of the rigid body rotation for the interior 
problem. In the numerical implementations, we investigated the MPF for various 
boundary conditions when the size of domain is a degenerate scale. It is found that 
the MPF corresponding to the near-zero minimum singular value is zero when the 
boundary condition is a rigid body rotation without containing any translation. 
Therefore, the additional rotation term is not necessary to be included in the 
regularized BIE for the interior degenerate-scale problem. We extended the 
Fichera’s idea to add a constant and a corresponding constraint for the rank 
promotion. The necessary and sufficient BEM/BIEM to ensure a unique solution 
was examined. Finally, we successfully enriched the range deficiency by adding a 
constant term in the BIEM for the problem with a degenerate scale. 

Table 1:  The comparison of the simple test for the BEM and the FEM. 

 BEM/BIEM FEM 
Test Rigid body test Patch test 

Boundary condition 
Rigid body translation 
and rigid body rotation 

Uniaxial stress to check 
the constant strain 
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