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Abstract 

In this work we present an overview of the RBF finite collocation approach. The 
RBF-FC method is an alternative decomposition for the localisation of the radial 
basis function (RBF) collocation method for the solution of PDEs. In contrast to 
the popular finite difference approach, in which the PDE governing operator is 
reconstructed from simple RBF interpolants, the finite collocation formulation 
instead enforces all governing and boundary PDEs within the local RBF 
collocation systems, and assembles the field variable directly into a sparse global 
assembly. In this way the solution of the PDE is enforced by collocation, rather 
than by differencing. By including the PDE governing operator within the local 
collocation systems any data extracted from the RBF interpolation field naturally 
respects the local physics of the PDE, including information about the local 
convective field. This gives rise to an “implicit upwinding” effect, which allows 
stable solutions to be obtained in convective-dominant scenarios when using 
centred stencils. The approach also allows high rates of spatial convergence to be 
obtained. We present here an overview of the RBF-FC formulation, demonstrating 
the performance of the method with benchmark examples for linear elasticity and 
convection-diffusion PDEs. The adaptation of the method for unsteady problems 
is described, including a Richardson extrapolation method to improve rates of 
temporal convergence. The application of the method to the capture and transport 
of discontinuous profiles is also examined. 
Keywords: meshless, radial basis functions, RBF local, finite collocation, linear 
elasticity, convection-diffusion, Richardson extrapolation, shock capturing. 
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1 Introduction 

The radial basis function (RBF) collocation method for the solution of PDEs, as 
originally described by Kansa [1, 2], has been applied to a variety of fields within 
Engineering. RBF collocation methods are attractive due to their meshless 
formulation, relative ease of implementation, high convergence rates, and 
flexibility with regards the enforcement of arbitrary boundary conditions. 
However the use of globally supported basis functions leads to fully-populated 
collocation matrices, which become increasingly ill-conditioned and 
computationally expensive with increasing dataset size. 
     One popular approach to RBF localisation is generalised finite differencing 
(RBF-FD). Starting from a set of scattered nodes, an RBF collocation system is 
formed around each internal node, covering the solution domain. In analogy to 
traditional finite difference methods, the local RBF systems collocate the unknown 
solution value at each node within the system, with the governing PDE enforced 
by reconstruction in order to form a sparse global linear system which expresses 
the value of the governing PDE operator in terms of surrounding nodal values. For 
more information see for example [3–5]. 
     The proposed finite collocation approach (RBF-FC) similarly starts from a set 
of overlapping RBF collocation systems. However, rather than simply collocating 
the field variable, as in RBF-FD methods, the PDE governing operator is enforced 
over the stencil interior, with the field-variable enforced around the stencil 
periphery, and the boundary PDE operator enforced at any domain boundaries. In 
this way the local collocation systems are analogous to the full-domain RBF 
method. Since the PDE governing operator is enforced within the local collocation 
systems, the global assembly is obtained by reconstructing the value of the field 
variable at each local system centrepoint (i.e. at each internal node of the original 
dataset), in terms of the value of the field variable at nodes on the stencil periphery. 
In this way communication between adjacent systems occurs only at the stencil 
boundaries, and the procedure is essentially an assembly of overlapping local 
boundary-value systems. 
     Including the PDE operator within the RBF collocation systems offers a 
number of benefits over a simple interpolation approach. The presence of the PDE 
centres within the underlying interpolation systems improves the accuracy of any 
data extracted, leading to significantly higher rates of spatial convergence. 
Moreover, the local flow of information is respected, including the local 
convective field, allowing convective-dominant problems to be solved on centred 
stencils. We refer to this effect as implicit upwinding, since the weight assigned 
to each node within the stencil is dynamically adjusted by the method to account 
for the direction and magnitude of the convective field. Additionally, we observe 
that the RBF-FC approach is capable of predicting partial derivatives to the same 
order of accuracy as the field variable itself; a feature that is particularly useful for 
linear elasticity problems, where the accurate prediction of stress fields is often of 
more interest than the prediction of displacement. 
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2 Numerical formulation 

In order to fully describe the method we review first the well-known procedure for 
RBF collocation with partial differential operators, before describing the 
localisation and assembly procedure that gives rise to the RBF-FC approach. 
Finally, the proposed formulation for implicit time advancement is described in 
terms of a Crank-Nicolson procedure with Richardson extrapolation. A more 
complete description of the RBF-FC formulation may be found in [6], for steady 
problems (including linear elasticity), or [7] for transient problems. 

2.1 Traditional RBF collocation for PDEs 

We consider the Hardy multiquadric radial basis function: 

   1/22 2r r c   .                                              (1) 

     Here c  is the RBF shape parameter, which determines the flatness of the basis 
functions. In practice, the value of the shape parameter can have a significant effect 
on solution quality for many RBF implementations. For smooth solutions a trade-
off often exists between accuracy and numerical stability; flat basis functions (i.e. 
high values of c ) lead to more accurate solutions at the cost of worse numerical 
conditioning in the resulting collocation systems. For more detail, see [9, 10]. 
     For a general linear boundary value problem 

   
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L u f x on

B u g x on

 

  ,
                                          (2) 

the full-domain RBF collocation method, as described by Kansa [1, 2], constructs 
the solution as: 
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where j  are a set of functional centres located at the dataset nodes. By enforcing 

the linear boundary operators, equation (2) at the set of nodes ix , the following 

collocation system may be obtained: 
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,                                             (4) 

where  ij i jx    . This collocation system is fully populated and non-

symmetric. In the RBF-FC method, these collocation systems are formed over 
each local stencil. The placement of differential operators within the local stencils 
is described in the following section. 
     As an alternative to the above-described Kansa collocation, the Hermitian 
collocation approach (see [8]) may also be employed in order to form the local 

Boundary Elements and Other Mesh Reduction Methods XXXVIII  75

 
 www.witpress.com, ISSN 1743-355X (on-line) 
WIT Transactions on Modelling and Simulation, Vol 61, © 2015 WIT Press



collocation systems. The Hermitian approach results in a symmetric collocation 
matrix with stronger non-singularity properties, at the cost of increased 
programming complexity. A comparison of the two methods in the context of 
RBF-FC is given in [6]; however, in most cases the two methods offer extremely 
similar performance. 

2.2 Finite collocation localisation procedure 

The RBF-FC localisation procedure forms a stencil around each internal node of 
the domain, enforcing the PDE governing operator at the domain interior, and the 
field-variable (Dirichlet) operator at the domain edges. Note that, at this stage, the 
value of the field variable is currently unknown, and will be obtained during the 
global assembly. If the stencil overlaps the domain boundary then the field 
variable collocation is replaced by the boundary operator for nodes that lie on the 
domain boundary. The PDE governing operator may also be enforced at additional 
auxiliary locations within the stencil, further improving the solution quality; see 
[6]. The stencil configuration is summarised in Figure 1. 
 
 

 

(a) RBF-FD stencil 
 

(b) RBF-FC stencil 

Figure 1: Comparison of stencils for RBF finite difference (RBF-FD) and the 
finite collocation approach (RBF-FC). Black marks represent 
collocation of the unknown solution value (solution centres). Red 
crosses represent collocation of the PDE governing operator (PDE 
centres). 

     Having formed local RBF collocation systems around each of the N  internal 
nodes 

( ) ( ) ( ) 1,...,k k kA d k N   ,                                        (5) 

the field value at any location within the support of local system k  may be 
reconstructed via equation (3). Expressing this value as a vector product we have 

     ( ) kk ku x H x                                               (6) 
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where  ( )kH x  is identified as a reconstruction vector for system k  at location 

x .  By reconstructing the field variable u at the local system centrepoint, ( )k
cx , we 

obtain the following: 
 

 ( ) ( )k k
cu x  =    ( ) ( )k k k

cH x    

 =     1( ) ( ) ( )k k k k
cH x A d


 
 

. 

(7)

 =  ( ) ( ) ( )k k k
cW x d   

 

     Here     1( ) ( ) ( ) ( ) ( )k k k k k
c cW x H x A


     is a stencil weights vector that 

expresses the value of the field variable, u , at the system centrepoint ( )k
cx , in terms 

of the entries in the local system data vector ( )kd . By performing the above 
reconstruction, equation (7), for the centrepoint of each local system, k , a series 
of N  simultaneous equations are formed for the N  unknown values of ( )ku  at the 
local system centrepoints. These values are obtained by solving the resulting 
sparse global assembly, providing the value of u  throughout the domain. 

2.3 Time discretisation and Richardson extrapolation 

To extend the above procedure to solve transient problems with implicit time-
stepping, we take a traditional finite difference of the time derivative, producing 
modified PDE governing operators that may be used in the local RBF collocation. 
In this way the transient problem is reduced to a series of inhomogeneous steady-
state problems, with the inhomogeneous term storing information from the 
previous timestep. We consider here a Crank-Nicolson time discretisation 
approach along with a Richardson extrapolation to improve the rate of temporal 
convergence. 
     For a general initial boundary-value problem 

 

 ,x t

t




 =    , ,L x t S x t x       

 ,0x  =  f x x

, 

(8)

 ,B x t    =  ,g x t x   
 

we take a Crank-Nicolson approximation to the time derivative 

 
1

11 1
,

2 2

n n
n nL L S x t

t

   


         
,                         (9) 

to obtain modified PDE operators 
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11 2
ˆ 11 2

L t L

L t L
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   ,
                                              (10) 

such that 

 1 ˆ ,n nL L S x t         .                                    (11) 

     In this way we reduce the initial boundary value problem, equation (8), to the 
solution of an inhomogeneous boundary problem at each timestep, with the 
inhomogeneous term obtained from the solution at the previous timestep. 
     To increase the rate of convergence in time we may implement a Richardson 
extrapolation. This straightforward extrapolation method, first described in [11], 
allows low-order terms to be eliminated from any time discretisation procedure 
where the rate of convergence is known. By performing a single timestep of size 
h  to obtain h , then covering the same space with two timesteps of size / 2h  to 

obtain /2h , the two solutions may be combined to remove the leading order error 

term. For the Crank Nicolson discretisation outlined in equation (9), this increases 
the rate of temporal convergence from second order to fourth order. Further terms 
may be eliminated by considering timesteps of size / 4h , / 8h  etc. The 
extrapolation formulae for these cases and the corresponding convergence orders 
are outlined in Table 1. 

Table 1:  Richardson extrapolation formulae for second-order timestepping. 

Conv. order Extrapolation formula 
Relative 

computational cost 

2 h  1 

4 /24

4
h h 

 3 

6 /4 /264 20

45
h h h   

 7 

8 /8 /4 /24096 1344 84

2835
h h h h     

 15 

3 Linear elasticity results 

We consider a linear-elastic plate with a circular hole under uniform traction. This 
well-known benchmark problem results in a concentration of stresses around the 
hole (see Figure 2(b)). An analytical solution may be formulated, as given by 
Timoshenko and Goodier [12]. 
     We take a Young’s modulus of 210GPa  and a Poisson ratio of 0.3  to represent 
mild steel, with a hole radius of 1m and a far-field traction of 100MPa . We exploit 

78  Boundary Elements and Other Mesh Reduction Methods XXXVIII

 
 www.witpress.com, ISSN 1743-355X (on-line) 
WIT Transactions on Modelling and Simulation, Vol 61, © 2015 WIT Press



the symmetry of the problem to examine a single quadrant, constraining the 
solution domain to a 4m x 4m region. Over the hole we enforce the appropriate 
zero-traction condition, at the lines of symmetry we impose the symmetric 
condition (zero normal displacement and zero tangential traction), and at the far-
field boundaries we enforce the analytical surface traction field, as defined by 

e
i ij jn  . 1N   nodes are distributed over the hole, with 1N   nodes in the radial 

direction to create a regular but non-uniform dataset (see Figure 2(a)). We consider 
a 5x5 stencil with auxiliary PDE centres, as shown in Figure 1(b). 
 

 
(a) Dataset (N=20) and BCs (b) Contours of stress (σ11) 

Figure 2: Plate with a circular hole under traction: dataset and stress contours. 

     Figure 3 shows the L2 relative error obtained for displacement and stresses, for 
datasets of size N = 20, 30, 40, 60, 80. Note that the rate of convergence for the 
displacement and stress fields is very similar, as is the magnitude of the errors. In 
FEM and similar methods, the stress fields typically exhibit significantly lower 
rates of convergence than does the displacement field. By contrast, the RBF-FC 
method is able to reproduce field-variable derivatives (such as stresses) to the same 
level of accuracy as the field variable itself. The rate of convergence for each 
solution field is around 7th order in this case. 
 

 

Figure 3: Spatial convergence for plate-with-a-hole case (roughly 7th order). 
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4 Unsteady convection diffusion results 

To demonstrate the implicit upwinding effect we examine the convection of a 
Gaussian packet in the absence of diffusion, i.e. at infinite Péclet number: 

0i
i

u
t x

  
 

 
,                                              (13) 

where the Gaussian packet is defined by the initial configuration 

  200,0 cx xx e   .                                          (14) 

We solve over the unit square, discretised by 2N  uniformly distributed nodes, 
enforcing periodic conditions at each boundary. The convective term is taken to 
be diagonal, i.e.  1.0, 1.0u  , with the profile initially located at the centre of the 

domain;  0.5,0.5c  . In this way, after time 1.0t   the profile performs a 

single diagonal cycle and returns to its initial location. The initial solution profile 
is shown in Figure 4. 
 

 

Figure 4: Initial configuration; Gaussian packet ( 40N   dataset).  

     Setting the timestep size to 1 /t NT  , we examine the solution accuracy for 
NT  ranging between 16 and 131072, with datasets of size 40,80,160,320N 
and four different timestepping schemes; the second order Crank-Nicolson scheme 
without extrapolation, and Richardson extrapolation for fourth, sixth and eighth-
order convergence. The stencil is a centred 5x5 patch (see Figure 1). 
     Figure 5 shows the results of the time convergence. The profile of each curve 
is consistent; the error reduces in-line with the convergence order of the 
timestepping scheme, until the limit of spatial accuracy is obtained. Temporal 
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convergence rates are, however, somewhat restricted for large timestep sizes. The 
improvement from increased levels of Richardson extrapolation is clear, however 
the highest level of extrapolation (8th order; red lines) only offers a cost-
performance benefit over the 6th order scheme (green lines) at the highest dataset 
densities ( 160, 320)N N  . The 6th order scheme, however, is more 

computationally efficient than the 2nd and 4th order schemes for all examined 
datasets. The high rate of spatial convergence can be observed from the large 
reduction in the small-timestep accuracy obtained by refining the dataset. Spatial 
convergence is roughly 8th order in this case (see [7] for more detailed analysis). 
 

 

Figure 5: Gaussian packet convergence (various time-schemes and datasets). 

5 Shock capturing results 

The method is capable of capturing smooth yet strongly varying solutions in a 
pure-convection scenario. However, due to the smooth nature of the underlying 
basis functions, discontinuous profiles cannot be transported in the absence of 
diffusion without introducing oscillatory behaviour (see Figure 6). These 
oscillations are neutrally stable, i.e. they do not grow over time. By introducing a 

small artificial diffusion parameter, *D  i.e. solving 

2
*

2 i
ii

D u
t xx

    

 

,                                         (15) 

the spurious oscillations may be damped, thereby stabilising the solution. 
     Figure 7 shows the transport of a discontinuous square-wave packet using a 
small, constant artificial diffusion parameter. The domain is of length 1.0, with N  
nodes in the 1x  direction. The packet is convected for a single cycle (i.e. 1t  ). 
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Here the value of *D  is selected such that the magnitude of oscillations decays to 

below 310  after the cycle is completed. As can be seen in the figure, relatively 
little solution smearing is visible, particularly with the higher-resolution dataset 
(Figure 7(b)). 

 

(a) 40N   dataset (b) 160N   dataset 

Figure 6: Gibbs oscillations from convecting a discontinuity without 
smoothing. 

 

 
(a) 40N   dataset: * 43 10D    (b) 160N   dataset: * 53 10D    

Figure 7: Shock capturing examples using artificial diffusion. 

     The above implementation of the artificial stabilisation damps out oscillations 
steadily over time. An alternative approach is to employ the artificial diffusion in 

a dynamic “pulse” fashion, using larger values of *D , but only switching on the 
artificial diffusion when oscillations are detected. Operating in this way 
the magnitude of oscillations can be constrained to within a specified tolerance 
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throughout the simulation, and very long-time runs can be performed with minimal 
solution smearing (see [7] for more details). 

6 Summary 

We provide an overview of an alternative localisation strategy for the RBF 
collocation approach. The “finite collocation” formulation aims to closely 
resemble the structure of the global RBF collocation approach, by forming a series 
of local boundary value systems that enforce the governing and boundary PDE 
operators and communicate via their stencil boundaries. In contrast to the RBF 
generalised finite differencing method, the global system is obtained by 
assembling the field variables, rather than by reconstructing partial differential 
operators. In this way the solution of the PDE is driven by collocation within the 
RBF local systems, rather than by differencing at the global level. 
     This finite collocation formulation provides high convergence rates, and 
introduces a number of desirable numerical properties, including an “implicit 
upwinding” effect that allows convective-dominant solutions to be obtained on 
centred stencils. By exploiting the implicit upwinding feature, small amounts of 
artificial diffusion may be introduced to stabilise the capture of discontinuous 
solution profiles. The amount of artificial diffusion may be tuned to the local 
dataset density and desired oscillation tolerance, allowing a balance to be achieved 
between solution smearing and stability. 
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