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Abstract 

A meshless local Petrov–Galerkin (MLPG) method has been developed for 
solving 3D incompressible isothermal laminar flow problems. It is derived from 
the local weak form of the Navier–Stokes equations by using the general MLPG 
concept. By incorporating the multi quadrics radial basis function (MQ-RBF) 
approximations for trial functions, the local weak form is discretized, and is 
integrated over the local subdomain for the unsteady incompressible fluid flow 
analysis. The present numerical technique uses characteristic-based split algorithm 
to solve Navier–Stokes equations in terms of primitive variables. A test case of 
lid-driven cavity flow is presented. The numerical procedure produces stable 
solutions with results comparable to those of other conventional methods. 
Keywords: meshless analysis, meshless Petrov–Galerkin method, Navier–Stokes 
equation. 

 

1 Introduction 

The solving of incompressible Navier–Stokes equations together with the 
continuity equation constitutes a major problem of computational fluid dynamics. 
The mesh-based finite element (FEM) and volume (FVM) methods are usually 
used to solve this problem. However, these equations are nonlinear, which leads 
to the simulation usually requiring large meshes and lengthy computation [1]. 
     The success of mesh-based methods relies on the mesh quality. Thus, their 
numerical simulations are often affected by mesh generation, especially for the 
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problems with complex geometry. Recent development in the automatic mesh 
generation procedures for mesh-based methods relieves the difficulties. However, 
to maintain detailed data about the mesh, including all nodal and element relations 
is still very expensive. These make mesh generation, modification, and re-meshing 
a time consuming process. 
     To overcome the above mentioned difficulties, a number of meshless methods 
have been developed in the past two decades, in seeking to avoid the drawbacks 
or weakness of the standard numerical methods. From the viewpoint of 
approximation techniques, many meshless methods are based on the moving least 
square (MLS). Another popular meshless approximation technique is radial basis 
functions (RBF). Initially, RBFs were developed for multivariate data and function 
interpolation. It was found that RBFs were able to construct an interpolation 
scheme with favorable properties such as high efficiency, good quality and 
capability of dealing with scattered data, especially for higher dimension 
problems. 
     The meshless local Petrov–Galerkin method (MLPG) like other meshless 
methods, is based on regularly or randomly distributed nodal points covering the 
domain. Every node is at the centre of a surrounding local mesh of simple shape 
(quadrilateral, circle, sphere etc.). The unknown variable in this point is then 
expressed using a local weak formulation of governing equation on this local 
mesh. All of these unknown variables are approximated by RBF interpolation 
method (e.g. [2, 3]) to obtain a system of linear equations. Solving this system of 
equations leads to a numerical solution of the problem. 
     The MLPG method was first applied to solve the incompressible flow equations 
by Lin and Atluri [4], who reported the use of the direct solution of a system of 
non-linear equations together with an upwind scheme to overcome oscillations 
produced by the convection term. They also added the perturbation term to the 
continuity equation to satisfy the Babuska–Brezzi condition. However, the 
problem remains of finding a proper value of the perturbation parameter in cases 
of flow with higher Reynolds numbers. Meshless methods can also be aided by 
the use of CBS to overcome the problem of the non-linearity of the Navier–Stokes 
equations in primitive variables (e.g. [5]). On the other hand approaches developed 
using the vorticity–stream or the velocity–vorticity formulation cannot be directly 
extended to solve in 3D, and some types of boundary conditions are also difficult 
to define. Therefore, the primitive variables method is applied in this article. 
     It is interesting to explore whether the MLPG method has a potential to solve 
three-dimensional (3D) flow problems as efficient as two-dimensional case. This 
motivates the present paper. In the study, the time integration of the Navier–Stokes 
equations in the primitive variable form is carried out by means of the fractional 
step procedure, in which the momentum equations and the Poisson equation for 
pressure are solved separately at each time step. This procedure is applied to three-
dimensional incompressible lid-driven cavity flow with Reynolds numbers of 100, 
400, and 1000. The computed velocity profiles along the vertical and horizontal 
centrelines were given and compared with the results of Ding et al. [6]. 
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2 Governing equations and a characteristic-based  
split algorithm 

The governing equations for unsteady incompressible viscous fluid flow are 
Navier–Stokes equations in the primitive variable form can be written as 
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where ui is the velocity in i direction, p is the pressure, fi is the body force in 
direction i, ν is the kinematic viscosity and ρ represents the density of fluid. 
Equation (1) is the momentum equation and equation (2) is the continuity 
equation. A CBS algorithm is used to solve this problem (see [5, 7]). The time 
derivative of the velocity vector in a momentum eqn.1 can be replaced with a 
difference approximation and following relation is obtained 
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where upper indexes n and n+1 indicate the time step, ν is the kinematic viscosity 
and Δt is the length of the time interval. The last term in square brackets acts as 
the stabilizing term (see [5]). Equation (2) is an explicit formula for the convection 
and viscous terms, and an implicit one for the pressure term. Equation (2) is 
simplified using the fractional time step approximation (e.g. [6, 8]), which 
computes the intermediate velocity ũ using simplified momentum equation 
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     The intermediate velocity ũi does not satisfy the continuity equation (2). The 
velocity components ui

n+1 must satisfy the continuity equation which implies 
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     Equation (6) is the Poisson’s equation with non-zero source term [1]. The 
equation (4) and equation (5) are solved explicitly by updating nodal values for 
velocity components. The pressure equation (6) is solved using MLPG over 
problem domain with boundary conditions pn|Γu = p̄n and ∂pn/∂n|Γq = q̄n. 
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3 The MLPG method formulation 

The meshless local Petrov–Galerkin method (MLPG) is truly meshless method 
which requires no elements or global background mesh, for either interpolation or 
integration purposes. The area of interest Ω with the boundary Γ is covered by 
points within the area and also on the global boundary (see Figure 1). Consider a 
local quadrilateral sub-domain Ωs with boundary Γs centred at every point s. This 
sub-domain is regular around all the internal points, but at the points on the global 
boundary this local boundary consists of a part of the global boundary intersected 
with the local sub-domain Γs. To express the local boundary integral form of the 
Navier–Stokes equations using the CBS algorithm in a domain Ωs, we apply the 
weighting residual principle to equation 4–6. For simplicity we neglect a body 
force term to obtain the following weak form: 
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Figure 1: Schema and nodal distribution for 3d lid-driven cavity flow, a) top 
view and b) axonometric view of the model. 

     Here w is a weighting (test) function. The test function is chosen to be the 4th 
order spline function defined by (10) where q is Euclidian distance from actual 
node normalized by local quadrature (mesh) dimensions. After integration by parts 
in (7) and (9) the following integral equations can be obtained (see also [8, 10, 
18]): 
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     The boundary integrals over Γs in (11) and (12) needs to be evaluated only for 
nodes where local quadrature intersects with global boundary. Unknown values of 
the pressure, velocities and its derivatives in the arbitrary point can now be 
approximated by values of the pressure in N neighbouring points using RBF 
interpolation. Multiquadrics RBFs are used here 
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     Here R(rij) is the multiquadrics RBF between points i and j (see [1–3]), rij is the 
Euclidian distance between these two points and αc is the so-called shape factor of 
the multiquadrics function and dc is average nodal spacing around node of interest. 
A technique described in detail in [7] can be used to obtain a set of RBF shape 
functions Φij, which can be used to express the pressure, velocities and its 
derivatives in the point i as 
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using these shape functions leads equations (11), (12) and (8), respectively, to 
become 
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where uim, u͂im and pm are the values of velocity components, intermediate velocity 
components and pressure, respectively, in the points neighbouring the reference 
point s. The matrices Msm, Asm, Bsm, Csm, Dsm, Fsm and Gsm can be written as 
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where ne is the number of local quadrature subdomains. The mass matrix Msm can 
be used in either a full or lumped form. The lumped form is used here, because it 
eliminates a matrix inversion procedure. The upwind term matrices Dsm, Esm and 
Fsm comes from last three terms in (11). 
     The fractional step algorithm described above can be summarized as follows 

 Start with initial velocity field, 
 Compute intermediate velocity field using (15) for each node, 
 Solve the Poisson equation (16) using MLPG to obtain the pressure, 
 Update velocities using (17). 

4 Numerical example 

In this section the MLPG solution of Navier–Stokes equations developed in the 
previous sections is validated by solving the 3D lid-driven cavity flow example as 
a benchmark problem of fluid flow simulation [6]. Lid-driven cavity flow is used 
as a standard test problem for the validation of numerical solutions of 
incompressible Navier–Stokes flow. The top wall of the cavity moves with a 
velocity ux=1, and no-slip impermeable boundary conditions are assumed along 
the other three walls. The difficulty of this problem lies in the presence of 
singularities of pressure and velocity at the two upper corners of the cavity. 
Therefore, the density of points used increases toward the corners of the cavity 
(see Figure 1). The grid-point distribution in three directions is taken the same, 
and chosen as [8] 
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where subscript i=1, 2 and 3 is the dimension and xu are the coordinates of the 
corresponding uniform distribution of points. 
     Based on CBS algorithm discussed in the previous section, the numerical 
simulation of the 3D lid-driven flow in a cubic cavity with Reynolds numbers of 
Re=100, Re=400 and Re=1000 are carried out. The initial values for all the 
variables at the interior points are set to zero. For the convergence criterion of 
steady flow, L2 norm of velocity difference between the new and old time levels 
is set to be less than 10e-6. Numerical simulations were performed on the grid of 
41x41x41 nodes. For all the numerical experiments carried out, the size of support 
domain is chosen as 

s s cd d                                                      (20) 

where dc is average nodal spacing around point of interest and the shape parameter 
in the MQ RBFs is set to αc=2.1 and q=1.03. In order to examine the performance 
of MLPG method, the following profiles were computed: u-velocity along the 
vertical centerline and v-velocity components along the horizontal centreline in 
the plane of z=0.5. Since there is no available analytical expression for the 
solution, the numerical solutions of previous literature are adopted as references 
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to validate the present results. The lid-driven flow in a cubic cavity has been 
studied by meshless local multiquadric-based differential quadrature (LMQDQ) 
method and reported by Ding et al. [6]. The computed results of the present 
method are compared with those of Ding et al. [6]. The velocity profiles of u 
component along the vertical centerline and v component along the horizontal 
centerline of the plane z = 0.5 are plotted in Figure 2a)–c) for Re=100, 400 and 
1000, respectively. It can be seen that the velocity profiles agree very well with 
those of Ding et al. [6]. It indicates that the MLPG method can achieve solution 
of equivalent accuracy as the other meshless method with the similar mesh size. 
 

 

 

 

Figure 2: Comparison of velocity component distribution along the vertical 
centerline of cubic cavity (v-x and u-y): a) Re=100, b) Re=400, c) 
Re=1000. 
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     For the purpose of detailed flow visualization the flow field patterns are shown 
using three centroidal planes of the cube, which are located at x=0.5, y=0.5 and 
z=0.5. Two-dimensional planar projections of the velocity vector field at Re=100, 
400 and 1000 on the three planes are shown in Figures 3–5. These figures illustrate 
the changing of flow patterns as Reynolds number varies from different viewing 
angles. 
 

 

 

 

Figure 3: Flow pattern and pressure contours  on mid-planes  at  z=0.5:  a) and 
b)

 
Re=100, c) and d) Re=400, e) and f) Re=1000. 

68  Boundary Elements and Other Mesh Reduction Methods XXXVIII

 
 www.witpress.com, ISSN 1743-355X (on-line) 
WIT Transactions on Modelling and Simulation, Vol 61, © 2015 WIT Press



 

 

 

Figure 4: Flow pattern and pressure contours on mid-planes  at  x=0.5:  a)  and 
b) Re=100, c) and d) Re=400, e) and f) Re=1000. 

     It can be observed from the flow pattern in the plane of z=0.5 (Figure 5) that 
the axis of the primary vortex starts in the upper right half region, then gradually 
moves towards the cube center as the Reynolds number increases. The flow also 
demonstrates strong three-dimensional characteristic. From the distribution of 
velocity vectors (Figures 3 and 4) in the planes of x=0.5 and y=0.5, it can be seen 
that secondary vortices move sidewards in the y-direction and upwards in the z-
direction as the Reynolds number increases. 
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Figure 5: Flow pattern and pressure contours on  mid-planes at  y=0.5:  a)  and 
b) Re=100, c) and d) Re=400, e) and f) Re=1000. 

 
 
     Similar flow patterns for Re=100, 400 and 1000 were also observed and 
reported by Ding et al. [6], Fujima et al. [9] and Guj and Stella [10]. 
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5 Conclusions 

A possible use of the meshless MLPG with RBF interpolation is presented here 
for the computation of three-dimensional incompressible flows. The primitive 
variable formulation of the Navier–Stokes equations and the CBS scheme is used 
to achieve stable and accurate results. The suitability of this procedure is validated 
using Lid-driven cubic cavity flow problem, simulated at several Reynolds 
numbers. Numerical solutions are compared with previous ones in the literature, 
and found in good agreement. The results demonstrate that the method is effective 
and useful for the large-scale simulations of computational fluid dynamics (CFD), 
especially for three-dimensional cases. However, there are still some issues, which 
remain unsolved in the MLPG method. For example, the shape parameter of MQ 
RBF needs to be determined by end-user, and the choice of optimal value of shape 
parameter still relies on the tests or experiences. 
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