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Abstract 

Some efficient methods are available in the literature to solve the problem of sound 
propagation in the presence of sonic crystal structures, such as those based in the 
Multiple Scattering Theory (MST) or in the Finite Element Method (FEM). More 
recently, the Method of Fundamental Solutions (MFS) and the Boundary Element 
Method (BEM) have also been applied for that purpose. In this paper, a new 
strategy based on the use of the MFS is proposed to tackle problems of sound 
propagation around 3D sonic crystals with constant geometry along the axis of the 
scatterers (2.5D). The problem is solved in the frequency domain, and the sound 
field is synthesized as a summation of simpler 2D problems. To allow the solution 
of large-scale problems, with a high number of scatterers, an Adaptive-Cross-
Approximation approach is proposed and incorporated in the MFS algorithm, 
rendering the calculation much faster and with very significant savings in terms of 
computational requirements. Examples are presented, and the calculation times 
and RAM requirements are compared with those provided by a classic MFS 
formulation. 
Keywords: sonic crystal, frequency domain, adaptive-cross-approximation, 2.5D 
problems. 

1 Introduction 

Different aspects of the behavior of sonic crystals have been studied in published 
works, some of which are essentially theoretical, while others focus some potential 
practical applications. In the first group, aspects such as the influence of the so 
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called point defects (Wu et al. [1]) or the existence of waveguides in which the 
sound propagates with low attenuation (Vasseur et al. [2]) can be mentioned. In 
the field of the practical uses of sonic crystals, one which may be regarded perhaps 
as the most promising is precisely their use for the selective attenuation of sounds, 
for example as traffic noise barriers (Sánchez-Pérez et al. [3]). A recent work on 
this topic (Castiñeira-Ibáñez et al. [4]) has addressed the classification of sonic 
crystal barriers in terms of the relevant European standards for the determination 
of the intrinsic characteristics of acoustic barriers. 
     Regarding numerical modeling of these structures, some studies can also be 
found in the literature. In [5], a multiple-scattering approach is used to analyze the 
acoustic wave propagation in periodic composites consisting of solid spherical 
scatterers in a fluid host. Also [6] proposed an extension of the multiple-scattering 
theory for elastic waves. Application of the Plane Wave Expansion method to 
study the elastic wave band gaps of steel inclusions embedded in a plastic matrix 
is found in [7]. The application of the MFS to analyze a sonic crystal composed of 
circular cylinders was proposed by Martins et al. [8]. In that work, the authors 
addressed the application for traffic noise attenuation in a 2D approach, with clear 
advantages in problem discretization and computational cost when compared to 
the BEM and FEM approaches. In the formulation, the scatterers were considered 
as rigid elements. Later, Santos et al. [9] extended this formulation to allow 
considering elastic shell scatterers. 
     The present paper aims to test the application of an MFS formulation for the 
3D sound propagation analysis through sonic crystals structures. Due to the usual 
geometry of sonic crystals, which exhibit a constant cross-section along one 
direction, a 2.5D model is here proposed for that purpose. To allow the analysis of 
very large structures, with several hundreds or thousands of scatterers, an Adaptive 
Cross Approximation (ACA) (Rjasanow [10]) strategy together with hierarchical 
matrices (Bebendorf [11]) is linked to the MFS, allowing a very efficient model to 
be setup. 
     The paper is organized as follows: first the theoretical formulation will be 
presented in terms of the governing equations and of the 2.5D formulation; then, 
the MFS formulation is briefly described; the main aspects of the application of 
the ACA and hierarchical matrices are then highlighted; finally, a number of 
examples is presented illustrating the efficiency and correctness of the predictions 
computed using the ACA-MFS algorithm proposed here. 

2 Mathematical formulation 

2.1 Governing equation 

It is usual to consider that the propagation of sound in a fluid space, in the 
frequency domain, can be mathematically represented by the Helmholtz equation. 
This equation has the usual form 

2 2 0P k P   ,                                                (1) 
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where 
2 2 2
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 for 2D problems, P is 

the acoustic pressure, k c , 2 f  , f  is the frequency, and c  is the 

propagation velocity within the acoustic medium. 
     Considering the 3D Helmholtz equation, assuming a constant geometry along 
the z axis, and applying a spatial Fourier transform along that axis, the 2.5D 
Helmholtz equation can be obtained as a function of the axial wavenumber  zk  

as 

     
2 2

2 2
2 2

0z z zp k k k p k
x y

  
      

,                           (2) 

where  zp k  is the spatially transformed pressure field; 2 2 2
f zk k k   can be seen 

as the effective wavenumber. The complete 3D field can be recovered by 
considering the inverse Fourier transform, so that the 3D pressure can be 
calculated as 

i( )e zk z
z zP p k dk






  ,                                           (3) 

corresponding to a continuous integral along the transformed variable zk . 

Assuming an infinite number of virtual sources, equally spaced  L along the z axis, 
this integral can be approximated as a discrete summation, and written as 

i2 2
( )e ,  where zm

M
k z

zm zm
m M

P p k k m
L L

 



  .                        (4) 

For this case, the fields generated by a sound source located at point 0x  of 

coordinates 0 0( , )x y , and for a given axial wavenumber zk , can be given, in terms 

of pressure and particle velocities generated at any receiver located at point x  of 
coordinates ( , )x y , as 

 (2)
0 0

i
( , , ) H

4f fG k k r x x                                       (5) 

 (2)
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x x


 ,                              (6) 

where 2 2
0 0( ) ( )r x x y y    , and n


 represents the direction along which the 

particle velocity is to be calculated. 
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2.2 MFS formulation 

In the MFS, the solution of the problem is approximated by a linear combination 
of fundamental solutions. To formulate the method, consider a generic 2.5D 
problem governed by equation (2) where the problem’s physical boundary   is 
subjected to Neumann boundary conditions, as defined by: 

1

i Kp
n





 


 .                                              (7) 

     To allow obtaining a solution for the problem, consider a set of NS virtual 
sources located outside the field of analysis, and assume that the pressure field at 
any domain point x  can be represented by a linear combination of the effects of 
the NS sources positioned at points x j  so that 

1

( , ) ( , , )
NS

f j j f
j

p k Q G k


 x x x ,                                     (8) 

where jQ  is an amplitude factor associated with each of the virtual sources, and 

which is, a-priori, unknown. 
     For the problem under study, and given such representation of the pressure 
field, consider, additionally, a set of NC collocation points distributed along the 
boundary  . Imposing the desired boundary conditions at each of the NC 
collocation points, a set of equations can be obtained in the form: 

,
1

( , , , )
NS

j i j K i
j

Q H k n 


 x x


 for each ix  at  ,                         (9) 

where ,K i  are the normal particle velocity values to be prescribed at each 

collocation point i. Establishing these equations, a system with NC equations on 
NS unknowns can be written, allowing the calculation of the unknown amplitude 
factors jQ . Evidently, other types of boundary conditions may be imposed along 

the boundary, although in the scope of the present work only Neumann conditions 
are considered. 

3 Adaptive-Cross-Approximation 

The Adaptive-Cross-Approximation (ACA) technique is here used to considerably 
improve the efficiency of the MFS model, rendering it faster and requiring less 
computer resources (RAM). The ACA is applied to approximate blocks of the 
MFS matrix, requiring, for that purpose, the calculation of only a much reduced 
number of rows and columns of that block, thus consisting of a low-rank 
approximation. The approximated block A is written in the form: 

T
kA S UV                                                 (10) 
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where U and V are obtained from a limited number of rows and columns of A. 
     The calculation of the approximation can be seen as a recursive algorithm, in 
which a residual matrix jR  and an approximation matrix jS  at step j are used, 

assuming that j jR S A  . For the approximation of a m x n matrix: 

 At the beginning, the residual matrix is 0R A , while the approximation of A 

is given by 0 0S  ; 

 For each subsequent step k=0,1,2,3,…, 
o The 1ki   row of the original matrix A is generated 

1,1:ki na A


 ; 

o The row of the residual matrix is calculated as: 

 
1 1,1: , 1: ,

1
k k

Tk
k

i n i l n l
l

R a u v
 



    
 
  

o The pivot column 1kj   is identified as the one containing the maximum 

value of 
1 ,1:k

k
i nR


 and the corresponding column of A is generated 

(
11: , km ja A


 ); 

o A normalizing constant is computed as  
1 1

1

1 ,k k

k
k i jR

 



  ; 

o The column of the residual matrix is calculated as: 

 
1 11: , , 1: ,

1
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k
k
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l

R a v u
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o Matrices U  and V  are updated: 

  
11: , 1 1 ,1:k

Tk
n k k i nu R

   

 
11: , 1 1: , k

k
m k m jv R

   

o The new pivot row 2kj   is determined as the one containing the maximum 

value of 
11: , k

k
m jR


, and the recursive process continues to the first step. 

     The recursive algorithm is stopped when the variation of the norm of the 
approximation matrix S is less than a given tolerance. Details on the procedure can 
be found in Rjasanow [10]. 
     An important advantage of the ACA technique is that it can be applied to 
different physical problems, being based on the original kernels that originate the 
matrix to be approximated. Thus, its application can reuse existing codes, which 
is a significant advantage when compared to other alternatives (such as the Fast 
Multipole technique, for example). 
     It is important to understand that only some of the matrix blocks can be 
approximated using the ACA, while the remaining must be fully computed using 
the conventional MFS. To determine which blocks can be approximated, 
hierarchical matrices (H matrices) are used, built by successive geometrical 
partition of the physical domain in smaller lower level subdomains (clusters). The 
subdivision stops when a given cluster contains less than a given number of 
elements. In the present paper, since the purpose is to analyze sonic crystal 
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structures composed of multiple scatterers with similar geometry, the subdivision 
is performed until each low level cluster contains only one full scatterer (such 
cluster is named a “leaf”), as illustrated in Figure 1. Following this subdivision, 
the scatterers must be reordered, so that nodes geometrically far away from each 
other also have indices with a large offset. 
 

 

Figure 1: Sequential subdivision of the domain in smaller clusters, until each 
low-level cluster contains only one scatterer (“leaf”). 

     To check if each matrix block can be approximated using the ACA, at each 
subdivision step, the distance between blocks is evaluated, and a simple criterion 
of admissibility is used: 

2 min( , )i j i jr r  x x                                        (11) 

where ,i jr r  are the “radius” of each cluster and i jx x  is the geometrical 

distance between their centers. 
     To exploit the full advantages of such approach, it is also necessary to solve the 
corresponding equation system by means of an iterative solver. In the present 
work, the GMRES iterative solver has been used, together with a block 
preconditioner (to accelerate convergence) based on the non-admissible blocks of 
the matrix. 

4 Verification and performance of the 2.5D ACA-MFS model 

In order to verify the proposed ACA-MFS model and to assess its performance, 
several cases were analysed. In this section, some illustrative results are presented, 
concerning a scenario in which a sonic crystal is composed of 315 scatterers with 
circular cross-section of radius 0.01 m, with their centres equally spaced 0.06 m 
between, each of them modelled using 20 collocation points. To simulate the 
generated pressure field, 20 virtual sources are positioned within each of the 
scatterers, originating a system with 6,300 collocation points and 6,300 virtual 
sources. The fluid medium is assumed to be air, with a propagation velocity of  
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340 m/s and a density of 1.22 kg/m3, and is excited by a source positioned at  
x=-0.5 m and y=0.6 m. The acoustic pressure response is computed at two 
receivers, located at x=0.7 m and y=0.75 m and at x=0.5 m and y=0.45 m. This 
system is schematically illustrated in Figure 2. 
 

 

Figure 2: Schematic representation of the acoustic system used for the 
verification. 

     As described in section 2, an ACA algorithm is used to assemble the MFS 
matrix, involving the definition of admissible and non-admissible matrix blocks. 
Figure 3 represents the block-structure of the system matrix, with darker grey 
patches representing non-admissible blocks and white patches corresponding to 
admissible blocks (approximated with ACA). It is clear that the largest part of the 
matrix can be approximated, and only a small number of diagonal blocks needs to 
be exactly calculated using the standard MFS. 
 

 

Figure 3: Matrix representation, with darker patches corresponding to non-
admissible blocks. 
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     To first check the correctness of the results computed using the ACA-MFS, the 
acoustic pressure is calculated at receivers 1 and 2 (see Figure 2), using both the 
proposed method and the standard MFS, for a complete range of frequencies from 
100 Hz to 5,000 Hz. Results calculated for two different values of zk  are presented 
in Figure 4, namely for zk =0.0 rad/m and for zk =50.0 rad/m. As can be seen in 
all presented plots, there is a perfect match between the solutions provided by the 
standard and by the ACA versions of the MFS at both receivers. It should be 
mentioned that the ACA-MFS results presented in Figure 4 are calculated 
considering the use of a pre-conditioner for the GMRES iterative solver, built by 
just considering the non-admissible blocks of the system matrix. For that purpose, 
and due to their structure and very limited number of non-zero values in this pre-
conditioner matrix, it is stored as a sparse matrix. 

 
 

zk =0.0 rad/m zk =50.0 rad/m 
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Figure 4: Comparison of the pressure calculated at two receiver points, using 
the MFS and the proposed ACA-MFS. The left column corresponds 
to kz=0.0 rad/m and the right column to kz=50.0 rad/m. 

     An important aspect to be addressed in the present study is related to the 
computational performance of the proposed ACA-MFS algorithm. To assess 
the computational performance of the algorithm, several tests were performed, and 
results in terms of the computational time (in percentage with respect to the time 
required by the standard MFS) and number of GMRES iterations are illustrated in 
Figure 5, once again for the two values of zk  indicated above. In that figure, results 

are presented considering different approaches on the use of a pre-conditioner for 
the GMRES solution. The following cases are considered: the sparse pre-
conditioner described above, built as a sparse matrix containing all non-admissible 
blocks; a pre-conditioner built as the incomplete LU factorization of the sparse 
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(a1) (a2) 

(b1) (b2) 

(c1) (c2) 

Figure 5: Calculation times, number of iterations of the GMRES solver, and 
RAM memory usage for the ACA-MFS with different pre-
conditioners. Left column ((a1), (b1), (c1)) corresponds to  

zk =0.0 rad/m and right column ((a2), (b2), (c2)) to zk =50.0 rad/m. 

pre-conditioner; a diagonal pre-conditioner built just considering the main 
diagonal of the system matrix; no pre-conditioner. 
     Observing the plotted results, it can be seen that all pre-conditioners reach 
convergence at all frequencies, with a clear tendency for the computational time 
to increase with the frequency. For the sparse pre-conditioner, however, very large 
computational times seem to occur for the higher frequencies, and in particular for 

zk =0.0 rad/m, even surpassing the original MFS algorithm (reaching a maximum 

of 160% of the computational time of the standard MFS). The explanation for this 
behaviour is related to the additional solution time required for the direct solution 
of Py X  (P being the preconditioner matrix). However, if an incomplete LU 

factorization of P is used instead, the procedure is rendered much more efficient, 
and the solution time decreases to, at most, 30% of the time required by 
the standard MFS. Observing the same plots, it is interesting to note that both the 
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sparse pre-conditioner and the ILU pre-conditioner require exactly the same 
number of iterations at all frequencies, although with very different calculation 
times. Without using any pre-conditioner, convergence was also reached, although 
at the cost of a higher number of iterations. The effect of using a diagonal pre-
conditioner seem to be negligible, with the same calculation times and number of 
iterations as for the case without any pre-conditioner. Very similar conclusions 
can be drawn from the results of both values of zk , although for zk =50.0 rad/m 
seems to require less iterations for convergence at lower frequencies; this may be 
justified by the fact that an almost null response is obtained for those frequencies 
and for the higher zk , as can be seen in Figure 4. 
     The last line of Figure 5 presents the amount of RAM required by the different 
versions of the ACA-MFS algorithm, as a percentage of the RAM required by the 
standard MFS. The extra memory required when using the ILU pre-conditioner 
can be justified by the fact that it requires the L and U matrices to be stored. 
However, it can be seen that this additional amount of RAM is not very significant, 
and the method is still very efficient for that case in what concerns the RAM usage 
when compared to the standard MFS. 
     Several additional tests were performed using the proposed ACA-MFS, namely 
to understand its behaviour for larger problems. Figure 6 illustrates results 
computed for the original problem, and for problems with 525 and 1,050 
scatterers. The three analysed configurations thus include 6,300, 10,500 and 
21,000 collocation points, and computations were performed for zk =10.0 rad/m 

and a frequency of 2,500 Hz, using the ILU pre-conditioner. The three plots 
present the amount of RAM used by the ACA-MFS and by the standard MFS, 
their calculation times, and the number of GMRES iterations required to reach a 
solution (only for ACA-MFS). These results indicate that the previously observed 
computational gains become even more evident and significant when larger 
problems are modelled, with amounts of RAM and computational times being less 
than 10% of those required by the original method. If the number of iterations is 
analysed, a progressive increase in the number of iterations is observed as the 
problem size increases. 

5 Conclusions 

In this paper, a strategy based on the use of the MFS was proposed to tackle large 
problems of sound propagation around 3D sonic crystals with constant geometry 
along the axis of the scatterers (2.5D). The problem is solved in the frequency 
domain, and the sound field is synthesized as a summation of simpler 2D 
problems. To allow the solution of large-scale problems, with a high number of 
scatterers, an Adaptive-Cross-Approximation approach was proposed and 
incorporated in the MFS algorithm. Test cases were presented, illustrating the 
main features of the method, and evidencing its efficiency. Results presented for 
different values of the wavenumber in the direction in which the cross-section does 
not vary (kz) revealed the good accuracy and stability of the method. When 
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(a) (b) 

 
(c) 

Figure 6: Results computed for different problem sizes, considering 
10.0 rad/mzk   and a frequency of 2500 Hz: (a) required RAM;  

(b) Calculation time; (c) Number of GMRES iterations. 

compared to the standard MFS methodology, a performance improvement of up 
to ten times was observed, with this improvement becoming more expressive as 
larger problems were considered. Different pre-conditioner schemes were 
considered and analysed, with the use of an ILU pre-conditioner revealing good 
convergence properties. In general, the methodology and the proposed 
implementation scheme seem to be very adequate for the analysis of sound 
propagation in the presence of sonic crystal structures. 
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