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Abstract

Traditionally, the various forms of compactly supported polynomial based schemes
such as finite difference, element, and volume methods were used in the numerical
solution of ordinary and partial differential equations (ODEs and PDEs) as well
as integral equations (IEs). The primitive computers had limited memory and
processing speed. As time progressed, spectral and pseudo-spectral methods that
possess exponential or spectral convergence that use tensor products of global
expansions of one-dimensional orthonormal functions were used to solve ODEs,
PDEs, and IEs. In the past 25 years, radial basis functions (RBFs) that can be
either compactly supported or global gained in importance. However, those global
RBFs that are C∞ with shape parameters enjoy exponential convergence. The
solution accuracy can be increased by either the spatial resolution or increasing
the shape parameters. The performance of C∞ RBFs has been demonstrated in
a wide variety of linear and nonlinear elliptic, hyperbolic and parabolic PDEs
and IE applications. Both well posed and ill-posed problems can be solved as
well as with defined arithmetic and fuzzy arithmetic, problems with fractional
derivatives, etc. Computers with the standard 32 bit chips limit the inherent
power of the global RBFs by giving rise to potentially severely ill-conditioned
systems. However, procedures using preconditioning and domain decomposition
can be used to overcome this limitation. Recently, fast extended precision software
enables the use of large shape parameters outperforming compactly supported
finite elements and other methods. Also, the Galperin–Zheng weak formulation
allows treatment of both well posed and ill-posed problems because it looks for
solutions with global, rather than local minima. Presently, meshfree C∞ RBFs
appear to have the potential of solving many important scientific problems in
higher dimensions.

Boundary Elements and Other Mesh Reduction Methods XXXVIII  3

doi:10.2495/BEM380011

 
 www.witpress.com, ISSN 1743-355X (on-line) 
WIT Transactions on Modelling and Simulation, Vol 61, © 2015 WIT Press



Keywords: partial differential equations, integral equations, radial basis functions,
strong and weak form, extended precision, global minimization.

1 Introduction

The objective of numerical solutions to integral equations (IEs) and partial
differential equations (PDEs) is to obtain realistic approximations to the set of
dependent variables, U(−→x ,t), over a finite domain, Ω ⊂ <n. Let L be either a
linear or nonlinear interior operator and f be the corresponding forcing function
on Ω\∂Ω. Let ß be either a linear or nonlinear boundary operator and g be the
corresponding forcing function on ∂Ω. For convenience, the combined interior
and boundary operator on Ω be =, and let ℘ be the combined forcing function
on the interior and boundary. Thus over Ω, the respective combined operators and
forcing functions on Ω are:

= = [L, ß]>, (1)

℘ = [f, g]>. (2)

This general form applies to either PDEs or IEs.

2 Finite difference methods

The numerical solution of IEs and PDEs historically is linked to the currently
available electronic computers. Early computers had small memory storage
and slow processors. Of necessity, compactly supported methods such as finite
difference and finite element methods were used. The earliest attempts of
approximations were solutions of simultaneous equations using polynomial basis
functions. Polynomials are simple functions capable of representing nonlinear
functions, and are the starting points for complicated functions and numerical
methods. The primary objective is to minimize the maximum error between the
polynomial and actual solution.

Over a local stencil or grid, finite difference methods (FDMs) are based upon the
assumption that a piece-wise continuous function can be approximated by a low
order polynomial, p(x), such as a Lagrange polynomial and the derivatives of that
function are approximated by the derivatives of p(x). The approximating function,
p(x), is only continuous at the stencil interface, but its derivatives from the left and
right of the stencil boundary are discontinuous. A kth degree polynomial can be
recast in terms of a Taylor series expansion about the point xi:

U(xi+∆x) = U(xi)+ΛxUx+(∆x2/2!)Uxx+ · · · (3)

Ux(xi+∆x) = Ux(xi)+∆xUxx+(∆x2/2!)Uxxx+ · · · (4)

For slowly varying functions, higher order derivatives are negligibly small and
the use of local polynomial interpolants based on a small number of interpolating
grid points is reasonable. In higher dimensions, tensor product grids are used.
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In one dimension, the FDM yields a sparse system of equations; but with
increasing dimensionality, the systems become increasingly denser, especially
when cross-derivatives are included. The truncation errors can generate numerical
instabilities unless the physics is changed by adding nonphysical numerical
viscosity. Theoretically, the truncation errors go to zero as ∆x and ∆t go to zero,
but in practice, these truncation errors always remain. These artificial derivative
discontinuities alter wave speeds. However, using low-degree local polynomials
to approximate solutions containing very significant spatial or temporal variation
requires a very fine grid in order to resolve the solution accurately. FDM were one
of the first methods used on primitive electronic computers to solve ODEs and
PDEs.

3 Splines

In practice, ordinary high order polynomials that pass through k, k ≥ 4, points
exhibit the polynomial “snaking” phenomenon, yielding very unreliable derivative
estimates. Because of the drawbacks of ordinary polynomials, a different type
of polynomial, namely, cubic and quintic splines that enforce varying orders of
derivative continuity at stencil interfaces are sometimes used (see Ferguson [1]).
In higher dimensions, tensor product approximations are used.

4 Finite volumes

Finite volume methods (FVMs) are similar to FDMs, except local definite integrals
are constructed on a stencil, see Eymard et al. [2]. Extensive quantities such
as mass, species, and total energy are cell-centered quantities, whereas the
momentum components are staggered at the midpoints of the cell faces. In FVMs,
the application of the Gauss divergence theorem converts spatial partial derivatives
to differences in surface fluxes. If the strictly conservative dependent variables are
used, then the strict conservation of mass, specie, momentum components, and
total energy is guaranteed. Another advantage of the finite volume method is that
it is easily formulated to allow for unstructured meshes. An important disadvantage
is the false numerical diffusion arising from the linear interpolation of face and cell
centered quantities; the other is the discontinuous nature of flux differences at cell
interfaces.

5 Galerkin finite element methods

In the Galerkin approach, an approximation is found that makes residual
orthogonal to the space from which U(−→x ,t) comes. This is accomplished by
ensuring that the weighted residual error is required to vanish when integrated over
the element is orthogonal to each of the basis polynomial functions. The finite
element method (FEM), see Reddy [3], is a special case of Galerkin method in
which integrals over local elements (meshes) are constructed as the inner product
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of the residual acting upon a trial function that is multiplied by a weight function.
The integration converts the spatial derivatives into surface integral differences.
The Galerkin method constructs an integral of the inner product of the residual and
the weight functions and sets the integral to zero. The residual is the error caused
by the trial functions, and the weight functions that are polynomial approximation
functions that projects onto the residual. The integral over the weight function
averages the residual that is minimized in a least-squares sense. However, this
minimum is, in general, a local minimum because the depth of this minimum is
strongly dependent upon the starting conditions, and there is no guarantee that this
minimum is a deep minimum.

Such problems can be cast in terms of seeking the minimum of a function
of n variables, U(−→x ), see Harris and Stocker [4]. Define, J, as the Jacobian to
be a vector of the first order partial derivatives of U, and, H, the Hessian matrix
to be a square matrix of second-order partial derivatives of U. A Taylor series
expansion of U is given by:

U(−→x +∆−→x ) = U(−→x ) + ∆−→x J + 1/2∆−→x TH∆−→x + · · · (5)

where −→x k is a critical point at which the Jacobian, J(−→x k) =0, then U(−→x k) may
be at a local maximum, minimum, or inflection point. To determine what type of
point −→x k is, one must examine the eigenvalues of the Hessian matrix at a critical
point, −→x k. The following test can be applied at any critical point for which the
Hessian matrix is invertible:

1. If the Hessian possesses all positive eigenvalues at −→x k, then U(−→x k) is a
local minimum.

2. If the Hessian possesses all negative eigenvalues at −→x k, then U(−→x k) is a
local maximum.

3. If the Hessian has both positive and negative eigenvalues at−→x k, then U(−→x k)
is a saddle point.

Assume the dependent variable, U(−→x ) is a linear combination of polynomial
functions over each kth element of the discretized domain, and the weighting
function, w(−→x ), is likewise is a linear combination of polynomials with different
expansion coefficients:

U(−→x ) =
N∑
k=1

φ(−→x )αk, (6)

w(−→x ) =
N∑
k=1

φ(−→x )µk. (7)

Then, the Galerkin procedure yields:

N∑
k=1

{∫
k

wT=U −
∫
k

wT℘

}
d−→x = 0, (8)
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For arbitrary variations of µk, in the expansion coefficients of the weight
function over all elements, one obtains

N∑
k=1

{∫
k

wT=φ(−→x )

}
d−→xαk −

{∫
k

wT℘

}
d−→x = 0. (9)

For time dependent problems, it is assumed that the spatial and temporal
variables are separable, and the time dependent expansion coefficients can be
approximated by the method of lines for ODEs. Clearly, the use of fine grids
requires significant computational resources in simulations of interest to science
and engineering.

5.1 Wavelets

Wavelets are orthonormal polynomial basis functions that are rotationally,
translationally, and dilationally invariant (see Chui [5]). Especially for time series
and image transmission, high signal compression efficiencies can be achieved with
relatively few basis functions. The compression can be either lossless or lossy.
The popular wavelets have compact support. In higher dimensions, tensor product
approximations are used.

6 Boundary element methods

The integral equation is an exact solution of certain classes of PDEs. The boundary
element method (BEM) (see Cheng and Cheng [6]) uses the given boundary
conditions to fit boundary values into the IEs. BEM is applicable to problems for
which Green’s functions can be calculated involving fields in linear homogeneous
media. BEM has high accuracy because of its semi-analytic nature and use of
integrals. BEM matrices are dense and non-symmetrical. BEM is good for PDEs
and IEs with infinite domains such as wave propagation, stress concentration.
BEMs reduces a 3D body problem to a 2D surface problem. Once this is done, in
the post-processing stage, the integral equation can then be used again to calculate
numerically the solution directly at any desired point in the interior of the solution
domain.

7 Spectral methods

Unlike FDM, FEM, FVM, spectral methods are global methods, in which the
computation at any given point depends not only on information at neighboring
points, but over the entire domain. Spectral methods (see Gottlieb and Orzag
[7]), yield very low errors and are exponentially convergent. Relatively few
points can yield spectral convergence. Spectral methods can be constructed with
other orthogonal polynomials rather than only the with Fourier basis functions.
Chebyshev or Legendre polynomials are used for problems on [−1, 1], Laguerre
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polynomials are used over [0,∞), and Hermite polynomials are used over
(−∞,∞). Global methods are preferable to local methods when the solution
varies considerably in time or space, when very high spatial resolution is
required, and also when long time integration is needed. Extensions to higher
dimensions require tensor-product grids since the popular spectral polynomials
are one-dimensional in nature.

8 Radial basis functions

A radial basis function (RBFs) is a univariate (one-dimensional) function that
depends only upon the radial distance, ri,j = ‖−→xi −−→y j‖. where ri,j is usually the
Euclidean metric from a data center, −→yj ∈ <n to the evaluation point, −→xi ∈ <n;
an n-dimensional problem reduces to one dimension. Note, other possible metrics
have not been thoroughly examined. In addition, no mesh generation is required
becoming a huge advantage when the spatial dimension increases, especially
beyond three dimensions.

There are three classes of RBFs:
1. Compactly supported RBFs were developed by Wendland [8], and Wu [9]:

The MQ RBF was invented by R. L. Hardy [10, 11] working with gravitational
and magnetic anomalies. Although the MQ and Gaussian C∞ RBFs are the most
commonly used, a comprehensive study of the best usage of each type of C∞

RBF spline has yet to be undertaken. It is important to note that Hardy [11]
recommended scaling all data centers to the unit volume in <n. Currently, there is
no theory to guide in the optimal choice of the shape parameters of the C∞ RBFs,
but the investigations of Luh [12] are quite promising.

RBFs have had extensive application in the areas of interpolation, least-squares
approximations, neural network approximations, machine learning, image
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φ(r) = (1− r)4
+(4r + 1), (2D RBF,Wendland), (10)

φ(r) = (1− r)5
+(5r4 + 25r3 + 48r2 + 40r + 8), (2D RBF,Wu) (11)

2. Poly-harmonic spline:

φ(r) = rk, k = 1, 3, 5, .. or (12)

φ(r) = rkln(r), k = 2, 4, 6, .. (13)

3. C∞ RBF splines can be any transcendental univariate function with a local
scale factor, εj = 1/cj , such that the product, ri,jεj is dimensionless. Some
examples are:

φ(ri,jεj) = [1 + (ri,jεj)
2]β , β ≥ −1/2 (multiquadric (MQ)), (14)

φ(ri,jεj) = exp(−(ri,jεj)
2),Gaussians, (15)

φ(ri,jεj) = sin(ri,jεj)/(ri,jεj) sinc, etc. (16)



reconstruction, edge detection, and the numerical solutions of integral and
partial differential equations,ill-posed problems, fractional derivatives, fuzzy
mathematics, etc. RBFs have the ability to treat noisy data by regularization,
providing the optimal solution. In addition, RBFs are flexible and robust and are
simple to implement.

9 C∞ RBFs applied to PDE and IEs

Kansa [13, 14] first applied MQ RBFs to the solution of hyperbolic, parabolic, and
elliptic PDEs using the strong form collocation formulation. Similarly to FEM,
assume that time and space are separable, and the only time dependence occurs
in the expansion coefficients. Consider a time dependent problem in which the
initial conditions are specified over the domain. To find the initial of expansion
coefficient, {α(0)}, split the sets of RBFs and expansion coefficients into the
interior (int) and boundary (bnd) giving rise to

Aα(0)=

(
Φint Φbnd

Φint Φbnd

)
·

(
αint(t)
αbnd(t)

)
=

(
Uint(−→x ,0)
Ubnd(−→x ,0)

)
(17)

If A is invertible, then α(0) = A−1U(−→x ,0). Then construct a system of equation
with interior operator, L acting only upon Ω\∂Ω, and ß acting upon ∂Ω yielding:

Eα(t) =

(
LΦint LΦbnd

ßΦint ßΦbnd

)
·

(
αint(t)
αbnd(t)

)
=

(
fint(−→x ,t)
gbnd(−→x ,t

)
= h(−→x ,t) .

(18)
If E is invertible, then α(t)= E−1h(−→x ,t). For any time t, U(x,t) = Aα(t). There
are many hundreds of journal articles involving novel problems with themes and
variations of RBFs that are too many to cite. The books by Fasshauer [15], Sarra
and Kansa [16], and Chen et al. [17] provide an overview of the many applications
that have been published such as ODES, PDEs, and IEs have been solved with
compactly supported, poly-harmonic splines, and C∞ RBFs.

Because both spatial and temporal truncation errors propagate along
characteristics in hyperbolic PDEs, it is important to minimize both types of errors.
The traditional approach is to modify the physics to suite the traditional numerical
schemes rather than modify the numerics to suite the physics. C∞ RBFs when
combined with high order time marching schemes in a suitable moving frame, do
provide both accurate time and space solutions. Consider the following PDE:

∂Uk/∂t +∇ · Fk = Jk, rewriting (19)

∂Uk/∂t +∇ · (Fk-
−→
λ k

i Uk)+
−→
λ k

i · ∇Uk = Jk. (20)

One can choose the local
−→
λ k

i such that ∇ · (F-
−→
λ iU) = 0 or appropriate linear

combinations so that the total time derivative equals J. If each evaluation center in
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Ω\∂Ω, has each velocity,
−→
λ i=d−→x i/dt, then

dUk/dt = ∂Uk/∂t +
−→
λ k

i · ∇Uk = Jk, along each
−→
λ k

i = d−→x i/dt. (21)

In this local moving frame where the space dependency is separable from the
time dependency of the expansion coefficients:

Φdαk/dt +[
−→
λ k

i · ∇Φ]αk= Jk, along each
−→
λ k

i =d−→x i/dt. (22)

At each −→x i, the expansion coefficient has an exact exponential matrix solution,
see Kansa [18].

αk(t+∆t)= expm(-∆tH)αk(t)+ expm(∆tH)
∫ t+∆t

t

Jk(−→x i,τ)expm(-τH)dτ ,

(23)
where

H = Φ−1[
−→
λ k

i · ∇Φ]. (24)

In an unpublished work, Kansa examined the self-similar solution of ideal
gas rarefaction fans of finite width arising from ideal gas Riemann solvers. In
the absence of any physical viscosity and interaction with walls, shocks, contact
surfaces or other rarefaction waves, These rarefaction fans, either right or left
facing, propagate indefinitely as self-similar fans. These fans remained self-similar
because the maximum eigenvalue, max{eig(expm(-∆tH)}= 1; this was observed
for 10000 time steps. These results occurred at very large values of c2

j using
extended precision; extended precision will be discussed later.

Shocks, contact surfaces and material interfaces are surfaces in<n−1 that can be
represented as a product of a Heaviside function in the local normal direction and
a RBF in <n−1 in the tangential directions (see [19]). A flame was modelled as a
discontinuous surface in an infinitely periodic domain within an inviscid flow field
with vortices on either side of the discontinuous flame front. The local burning
speed is a prescribed quantity as well as the expansion ratio that is the ratio of
the burnt gas density to the unburned gas density. The burned and unburned gases
communicate with each other by the Rankine-Hugoniot jump conditions. At each
instant of time, t, each interior point moves in a local Galilean frame such that each
PDE is an exact differential. Note at t = 0, the front is a vertical line. Later, due to
the vortical flow, the flame front becomes significantly curved, and still later, the
flame front becomes vertical. This pattern of the flame front curving and flattening
continues indefinitely (see [19]).

Detecting discontinuities in a time dependent problem is relatively simple if
data centers move. Riemann solvers give the speed and wave types after collisions
with other objects. Consider an ideal gas in which a piston is accelerating. For
subsonic flow, the pressure wave resembles a finite width sigmoid function. As
the flow transitions to supersonic, the width tends to zero at which time and
location a propagating Heaviside function can be inserted. An algorithm detecting
discontinuities was developed by Jung and Durante [20] for scattered data RBF
applications.
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10 Ill-conditioning

Ill-conditioning occurs on finite precision machines, the numerical act of solving
a system of equations, Aα = b, may lose up to m digits of accuracy. While
there may be many instances in which the solution process has a small relative
condition number, Krel, the absolute condition number, Kabs, may be orders of
magnitude larger. Kabs is a general estimate when the system will be unstable due
to round-off errors. Kabs : 1/machine epsilon, and absolute numerical stability
cannot be guaranteed mathematically. It is known that increasing cj increases
the convergence rate at the expense of increasing Kabs, Double precision has a
machine epsilon of about 1e-16 and quadruple precision has a machine epsilon of
2e-34 (see Higham [21]).

The problem requiring solutions of ill-conditioned systems of equations is not
unique to applications dealing with C∞ RBFs. In fact, if the number of equations
becomes significantly large with traditional compactly supported methods such
as FDM, FEM, and FVM, ill-conditioning will result. There is a vast network
of literature describing methods to treat ill-conditioning for compactly supported
FEM before ever being applied to d to C∞ RBFs. There are a number of
proven approaches to ameliorate ill-conditioning, especially using combinations
of approaches. Ill-conditioned systems, most often occurs when the rows or
columns of the coefficient matrix are very similar, so after an arbitrary number
of elementary row operations, the round-off errors render two or more matrix rows
very similar. Carlson and Foley [22] found that if data centers were aligned along
a preferred direction, such as data that is finely spaced in the x1-direction and
coarsely spaced in the x2-direction, (tract data), the system of equations is very
ill-conditioned. Surprisingly, allowing such data to have a randomized appearance
improves the conditioning. Other techniques used are:

1. Scaling each row of the matrix by the maximum absolute value of the element,
maxj |Ai,j |.

2. Iterative refinement of the equation, Aα = b, helps to attain more reliable
expansion coefficients. Soleymani [23] noted that Krylov subspace and accelerated
over-relaxation methods require a significant amount of time to obtain a reliable
solution. He developed a 7th order correct approximation to A−1 and used
256 digit floating point arithmetic. This scheme was tested on the notoriously
ill-conditioned Hilbert matrix. For an N×N Hilbert matrix of rank 15, Kabs=
1.5e21; for a rank 20 Hilbert matrix, Kabs = 6.2e28. After 50 iterations for the
rank 15 Hilbert matrix, the residual norm is 5.7e-250, and for the rank 20 Hilbert
matrix after 66 iterations, the residual norm is 3.6e-79.

3. In the effort to be able to treat more realistic and complex problems, fast
multipole methods have been developed for MQ-PDEs (see Brown et al. [24]).

4. Ling et al. [25, 26] developed a preconditioner for elliptic PDEs in which MQ
were used as the RBFs.

5. Ling and Schaback [27] developed a greedy algorithm (GA) linear system
equation solver to find fast RBF-PDE solutions. A GA repeatedly executes a
procedure that tries to maximize the return based upon examining local conditions,
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with the expectation that the result will produce a desired outcome for the global
problem. The GA may not completely solve the problem, or, if it produces a
solution, it may not be the optimal one. Sometimes the GA yields very good
(or even the best possible) results. In some cases such a strategy is guaranteed
to offer optimal solutions, and other cases, the GA may provide a compromise that
produces acceptable approximations.

6. Not all applications involving C∞ RBFs require full matrices; a rigorous
interpretation of C∞ RBFs is that the set of linear equations ALWAYS must
be full. This strict interpretation is unrealistic. Domain decomposition methods
(DDM) may be non-overlapping or overlapping and are a type of preconditioner
for large poorly conditioned systems. DDM generates a continuous set of
data centers over the entire domain, then subdivides those data centers and
uses a distributed-memory parallel technique to distribute the solution for each
subdomain to a network of processors. This substantially increases simulation
capacity. Domain decomposition is highly scalable to large numbers of processors
and takes advantage of multi-threading within the subdomains to reduce solution
times for individual subdomains. Various blending procedures such as the
alternating Schwarz method acting upon the Dirichlet and Neumann conditions
at the subdomain interfaces can be employed, see [28].

Rolland L. Hardy [11] who first discovered MQ used overlapping DDM in an
RBF-MQ application; he reconstructed from a crude coarse picture of Abraham
Lincoln into a easily recognizable one, using overlapping DDM and MQ. Quoting
from his article, “Again, the so-called ‘global’ MQ method was reduced to a very
local interpolation scheme of four picture elements involving a simple 4×4 matrix
which was then used many times to cover the whole picture without inverting a
266×266 matrix all at once, see Fig. 11.”

Other authors have used overlapping and nonoverlapping in a variety of
applications, even on parallel computers [29, 30]. With regard to C∞ RBFs,
points rather distant from one another should have only minimal influence as
compared to neighboring points. To determine this, Kansa and Hon [31] solved a
2D elliptic PDE on a unit square with non-overlapping DDM. After optimizing the
shape parameters for the global problem, experiments considered deleting matrix
elements if the normalized distance, rmax, between a data center and evaluation
point were greater than a prescribed value of rmax. The system of equations for
elliptic PDEs was sparse with a rather significant bandwidth. As the rmax shrank,
there was no noticeable change in the error between the exact solution and the MQ
solution until this distance became less than 1.4, after which the errors became
increasingly worse. Unfortunately, further research into truncating the expansion
for different applications was not performed.

7. One of the most common causes of ill-conditioned systems of equations
arising from the application of C∞ RBFs to PDEs and IEs is wasteful spatial
discretization. Purists wish to have fine uniform discretization for easier analysis,
but a fine discretization (h-refinement) greatly increases Kabs. A preferred
alternative is a local refinement of multi-layers to achieve h-refinement only where
it is needed.
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Multilevel sampling methods are efficient because they can be nested and
implemented in parallel. Libre et al. [32, 33] constructed a multi-resolution
prewavelet based adaptive refinement scheme for RBF approximations for nearly
singular problems. If one examines the local length scale, `, of a function, U(−→x ),
a workable definition is:

` = |U|/|∇U|. (25)

If ` −→ ∞, U is well represented by a very coarse discretization; if ` −→ 0,
then a very fine discretization is required. As the length scale approaches zero, this
indicates there is a transition to a Heaviside function in the normal propagation
direction.

8. In the strong collocation form of PDEs, the interior and boundary problems
have different operators acting upon them. Usually, as c increases, the L2 errors
decrease until it reaches a minimum, then begins to exhibit unstable behavior.
It is in this case where extended precision is beneficial. Hon and Schaback [34]
observed a rare case in which a combination of data centers and prescribed c value
produced a very ill-conditioned, or a possible singular system, However, a slight
increase or decrease in c drastically dropped Kabs; at the value of c that appears to
be singular, no increase in precision would help.

11 The Galperin and Zheng global minima method

A general unifying approach is presented by Galperin and Zheng [35, 36] to solve
PDEs, IEs, and IDEs as a global minimization problem in which the interior
operator, acting upon the C∞ RBFs is volume integrated over Ω\∂Ω and the
boundary operator, ℘, acting upon the C∞ RBFs is integrated over each ∂Ωk. The
functional, F , to be minimized, over the parameter set Q is:

min
q∈Q
F = $

∣∣∣∣∫
Ω\∂Ω

(LU-f)d−→x
∣∣∣∣+ (1−$)

∣∣∣∣∫
∂Ω

(℘U− g)d−→x
∣∣∣∣ ≤ η (26)

where Q is the set of free parameters, Q = {−→x ,−→y , c2
j , α}, $ < 1 and η

is a prescribed error criterion. Note that unlike the strong collocation method,
there is a prescribed amount of “fuzziness” in which the solution trajectory
is allowed to possess due to the integration process. The integrations can be
performed globally without the need for tessellation as required by finite elements
or the finite-element like meshless methods. The same advantages touted by FEM
applies here. Integration increases the rate of convergence and the integration of a
divergence or gradient is transformed by Gauss’s theorem into difference in surface
fluxes. The integration of the basis function,

∫
φ(−→x − −→y j)d−→x produces a vector

that is stored. Likewise, the integration of the operators, L and ℘, act upon the
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RBFs first, then the results are integrated and stored:

Ψ = {ψ1, ψ2, · · · , ψN}, where each ψj =

∫
Ω\∂Ω

Lφ(−→x -−→y j)d−→x , (27)

Θ = {θ1, θ2, · · · , θN}, where each θj =

∫
∂Ω

℘φ(−→x -−→y j)d−→x , (28)

F =

∫
Ω\∂Ω

f (−→x )d−→x , and G =

∫
∂Ω

g(−→x )d−→x . (29)

Then, the vectors are used to form a specific value of F(q):

min
q∈Q
F(q) = $|Ψ · −→αPDE-F|+(1−$)|Θ · −→αPDE-G| ≤ η (30)

With ill-posed problems, the amount of fuzziness should be increased. If one
wishes to have a finite element analog, then the total integration is a sum over all
local integrations that yields N equations in N unknowns. Nonlinear optimization
problems may have multiple local and global maxima, minima, and saddle
regions. Gradient based methods such as steepest descent, Newton–Raphson or
combinations thereof may only lead to the nearest local or global minimum.
Searching the complicated multi-dimensional landscape for global minima can
be exceedingly time-consuming since such minima may be clustered closely of
widely dispersed in parameter space. Although theoretically, the Galperin and
Zheng procedure eliminates the need to solve sets of linear or nonlinear equations,
global minimization requires a huge number of evaluations of the functional, F .
Fast reliable global minimization algorithms capable of dealing with at least 4N
parameters are not yet perfected. One way to minimize the number of functional
evaluations is reduce the total number of free parameters.

12 Implementation of the Galperin–Zheng method

Experience has shown that the set of data and evaluation centers, optimal shape
parameters and expansion coefficients are inter-related. Changing either the
location of the data centers and evaluation centers changes the magnitude of the
parameter, γ = c/h, that, in turn, changes Kabs of the system of equations involved
in determining the expansion coefficients. The PDE forcing functions over Ω\∂Ω
and boundary conditions on ∂Ω usually correlate with the loci of maxima, minima,
and inflection points. By having a minimal number of data centers in such critical
regions, a uniform dense covering is not necessary. One simple way to use this
formulation is to choose {−→x }, {−→y }, and {c2

j}, solve for {−→αPDE} in the strong
formulation, and use {−→αPDE} in the expression forF(q) repeatedly until a very or
global minimum is calculated. This is simpler than solving a 4N global optimizer
repeatedly.

Aside from the general guideline of Madych and Nelson [38] and Madych [39]
showing that the ratio of γ = c/h should be as large as possible, practical recipes
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for choosing either a uniform or variable shape distribution still require more
development. Kansa [13, 14] found using the MQ RBF that, if the solutions are
either monotonic increasing or decreasing, then the following power law works
well:

c2
j = c2

min*(c2
max/c2

min)(j-1)/(N-1), j=1,2,..,N, (31)

where c2
maxand c2

min are input estimates of the squares of the largest and smallest
length scales. Wertz et al. [40] demonstrated that the {c2

j }∂Ω associated with
boundaries should be larger than those associated with the interior. Fedoseyev et al.
[41] found convergence improvements by extending the interior discretization,
Ω\∂Ω, slightly beyond the boundary, ∂Ω.

The usual procedure is to choose a set of N {−→x } and {−→y } and either a single
shape parameter or a distribution of shape parameters, then solve an N×N set of
equations to find the expansion coefficients. To overcome the limitations of double
precision, the MATLAB compatible multi-precision package was obtained from
www.advanpix.com. To improve the convergence rate, γ should become very large.
This can be accomplished in two ways: (1) The h-scheme (spatial refinement)
increases the number, Nh, of data centers, but a relatively small 〈c2

j 〉. (2) The
c-scheme increases c, but requires a significantly smaller of data centers, Nc,
where Nc � Nh; the c-scheme requires O(N3

c)�O(N3
h) operations. The preferred

approach here is the c-scheme.
Huang et al. [42] compared double and quadruple precision arithmetic for the

c-scheme and h-scheme as well as with FEM. For a fixed c and h on their computer,

tquadCPU = 40tdoubleCPU . (32)

But the
tquadCPU (c-scheme) = (1/565)t

double
CPU (h-scheme). (33)

They demonstrated that they achieved high accuracy and efficiency with the
c-scheme.

Assume that in an initial mesh, FEM can solve the PDE to an accuracy of 1%.
Using a quadratic element or central difference, the error estimate is h2. To reach
an accuracy of 10−16, h needs to be refined 107 fold. per dimension. In a 3D
problem, this means 1021 fold more degrees of freedom. The full matrix is of the
size 1042. The effort of solution could be 1063 fold. If the original CPU is 0.01
sec, Huang et al. [42] concluded that to achieve an accuracy of 10−16, the required
time is 1054 years. For many people who are totally accustomed to FDM, FEM, or
FVM, the h-scheme is totally natural and unlearning this habit is very difficult.

For purposes of efficiency, the c-scheme is superior and preferable over the
h-scheme, see Huang et al. [42] and Cheng [43]. The disadvantage of either the
h-scheme or the c-scheme is that as ξ → ∞, the system of linear equations
becomes very ill-conditioned and subject to extreme round-off errors on computers
with limited arithmetic precision. Since then, new multi-precision software has
been developed with improved functionality and performance allowing efficient
handling of such issues even for large matrices, see Advanpix Multiprecision
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Computing Toolbox (MCT) [44]. The MCT provides wide range of numerical
analysis routines implemented with arbitrary precision support ranging from
elementary arithmetic operations [45, 46] to advanced solvers for ill-conditioned
linear systems and eigenvalue problems [47]. The MCT is heavily optimized
for modern multi-core parallel architectures and orders of magnitude faster than
Maple, Mathematica, and MATLABsVariable-Precision Arithmetic packages [44].
In contrast to legacy libraries in [48] used in [42], the MCT provides a
quadruple precision mode that is fully compatible with IEEE 754-2008 standard
for floating-point computations [49] with extended exponent range and accurate
approximation of small values.

13 Numerical results of the Galperin–Zheng formulation

There are several steps involved in calculating the Galperin–Zheng global
minimization. Firstly, the data centers are tensor product meshes; in each
coordinate direction, the well-known geometric progression of increasing finer
data centers were generated as x1 or x2 approaches unity. The boundary itself
is defined by the lines: (0, 0), (1, 0), (1, 1), and (0, 1). Following Fedoseyev et al.
[41], extra data centers are placed slightly beyond the boundary locus by adding
1-D randomly generated numbers multiplied by 2.03e-3 in the x1-direction and
2.51e-3 in the x2-direction. There are Nx1 points along the x1-axis and Nx2 points
along the x2-axis.

The test problem is the Poisson equation over a unit 2D square:

∇2U(x1, x2)= (a2+b2)exp(a · x1+b · x2) over Ω, (34)

(a and b are parameters that will be varied) with the following Dirichlet conditions
on

U(x1)= exp(a · x1) on ∂Ω(x2=0) and,U(x2)= exp(b · x2) on ∂Ω(x1=0), (35)

and Neumann conditions on the opposite boundaries:

∂U/∂x1= a · exp(a · x1+b) on ∂Ω(x2=1) and,

∂U/∂x2= b · exp(a+b · x2) on ∂Ω(x1=1). (36)

The exact solution is:

U(x1,x2)= exp(a · x1+b · x2). (37)

The test domain was chosen over a unit square, and various exponential parameters
for the forcing function, f, were chosen: The parameters, a and b, were specified
as a = 2 and b = 3. The maximum values of U at x1 = x2 = 1, is,
U = exp(5) = 148.4132.

Since most scientists and engineers are familiar with finite difference, element,
or volume methods, the customary procedure is to use extremely fine meshing.
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This approach is workable for 2 and 3-dimensional problems, but impractical
for 6D Boltzmann equations due to the curse of dimensionality. To minimize the
number of data centers, a geometric progression of increasingly finer discretization
was used, and the origin was appended in the construction of the tensor product
mesh. In the paper of Fedoseyev et al. [41], the computational domain, Ω was
extended slightly beyond the boundaries, ∂Ωk. The domain was extended to 1.022
in the x1 direction and 1.02412 in the x2 direction.

The highlights of the parameter tests are summarized below:
• The shape parameters multipliers, χDir and χNeu, respectively, corresponding

to either the two Dirichlet and two Neumann
boundary data centers were stored as adjustable input factors, see Wertz[40].
• While the power law recipe seems to work for monotonic functions, and

yields the desired wavelet relations, see [13, 14]; this power-law recipe is
too simplistic and is used only as a temporary measure.
• Since the maximum value of U occurs at x1 = x2 = 1, the geometric

progression algorithm produced successively finer discretization in the x1

and x2 directions. The first point was fixed at 0.16 for x1 and 0.18 for x2.
• Afterwards, the minimum values of x1 and x2 was −0.02 and the maximum

values of x1 and x2 was 1.025 were appended to the tensor product 2D mesh.
• The set of expansion coefficients, {−→αPDE}, was obtained by solving the

point collocation for the PDE and boundary conditions.
• Using the set of expansion coefficients, {−→αPDE}, and the integrated basis

functions over Ω\∂Ω and ∂Ω, the global Lstrong∞ error was calculated for
various choices of evaluation centers, data centers, {c2

j}, other tunable
parameters, and number of digits of precision.
• The data centers are tensor product meshes; in each coordinate direction,

the well-known geometric progression of increasing finer data centers were
generated as x1 or x2 approaches unity. Extra data centers are placed slightly
beyond the boundary locus by adding 1-D randomly generated numbers
multiplied by 2.03e-3 in the x1-direction and 2.51e-3 in the x2-direction.

14 Summary of results

The L∞ errors obtained from solving the set PDE expansion coefficients,
{−→αPDE}, calculating UPDE with these expansion coefficients relative to the exact
solution ranged from 0.469 to 2e-28 with the total number of points ranging from
12 to 110.

To analyze numerically the question whether the weak formulation is viable,
several steps are required.

1. Choose the distribution of {−→x } and {−→y } and the extent that the interior
points extend beyond the boundary.

2. Choose a distribution of shape parameters and the multiplicative factors for
the Neumann and Dirichlet shape parameters.
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Table 1: RMS errors of the Galperin–Zheng formulation: first term of geometric
progression: x1 = 0.27, x2 = 0.277 and exponential factors: a = 2,
b = 3 held constant.

ndigits c2max c2min χDir χNeu Kstrong
abs Lstrong

∞ Lweak
∞

N 32 1.021 0.9149 0.5 0.85 3.221013 1.8910−25 0.0033

56 128 1.021 0.9149 0.5 0.85 3.641013 1.8910−25 0.0022

56 512 1.0e5 0.0019 0.0007 79.31 3.641013 2.4410−25 0.0022

56 1024 1.0e5 0.0019 0.0007 90.0 3.221013 2.9110−25 0.0011

63 512 1.021 0.9149 1 1 3.64108 3.4910−30 0.0003

90 32 1.021 0.9149 0.5 0.85 1.461018 1.2710−22 0.0060

90 128 1.021 0.9149 0.5 0.85 2.481018 1.3610−22 0.0002

3. Construct the MQ basis functions and the integrated 2D RBFs for the
interior and the 1D integrated Neumann and Dirichlet RBFs, and choose
the weighting factor, $, for the interior and boundary problem.

4. Construct the strong form system of equation and find {−→αPDE}
5. Substitute {−→αPDE} into the strong form and reject if the Lstrong∞ error

exceeds 1e-6.
6. Continue varying the input parameters until the deepest Lweak∞ error, F(q),

is achieved.

min
q∈Q
F(q) = $|Ψ·−→α PDE − F|+ (1−$)|Θ · −→α PDE − G| ≤ η. (38)

In the following table, the constants, a and b are a = 2 and b = 3, were used
for the forcing term, and x1 and x2 that are the first terms, respectively for the
geometric progression of the x1 and x2 coordinates. Table 1 presents the number
of digits used, c2

max and c2
min are the maximum and minimum parameters for

the power law shape parameter distribution, χDir and χNeuare the multiplicative
parameters to modify the shape parameters associated with the Dirichlet and
Neumann boundary coordinates, respectively, Kstrongabs is the condition number
associated with the strong form of the PDE matrix, Lstrong∞ are the strong form
L∞ errors and Lweak∞ are the weak form L∞ errors.

Table 1 shows the results of increasing the number data centers for the
Galperin–Zheng weak formulation. During previous testing, and using an
increasing number of digits of precision, the values of c2

min and c2
max were

pushed., fixing the set, {c2
j}, using the set {α} from the solution of the point

collocation scheme, and fixing the starting points of the geometric progression
for the tensor product meshes.

Note that increasing the number of data centers, h-refinement, while fixing
the set, {c2

j} does show successively smaller RMS errors, but it is questionable
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whether the extra effort is warranted. The point of this exercise is to provide a good
starting point for the global optimization process in which all free parameters are
varied to find very deep global minima instead of a local minimum. In summary,
solving the PDE expansion coefficients as a series of strong form collocation
problems and inserting the expansion coefficients into the expression for F(q) is a
reasonable choice to find the set of deep minima and perhaps the global minimum.

15 Challenges

Two of the important unresolved issues are:

1. Implementation on massively parallel super computers

Implementation of multi-dimensional static and time dependent PDEs and IEs on
truly massively parallel computers using domain decomposition techniques needs
to be a very high priority to demonstrate the viability of C∞ RBFs. Such problems
can be the multi-dimensional PDEs and IEs such as the 6-D generalized Boltzmann
equations, molecular quantum mechanics, biological systems, American and
European option markets, special and general relativity, string theory, organized
and chaotic behavior, and likewise the search for designer drugs and treatments
for human diseases. Of the many multi-dimensional algorithms in use, C∞ RBFs
are the most viable. The question that must be firmly addressed is whether full
sets of equations are absolutely essential, or as R.L. Hardy demonstrated strict
globality is not needed.

The modified Gram–Schmidt algorithm also known as the QR method can
be used to construct orthonormal C∞ RBFs. The advantage of orthogonal
basis functions is that the coefficients are uncorrelated, thereby minimizing
approximation error and the sensitivity to round-off errors.

Constructing orthonormal was used in Galperin et al. [50] but, because of the
available computers and software round-off errors eventually contaminated the
set of RBFs, making them only approximately orthonormal. However, with the
use of multi-precision arithmetic, orthonormality can be extended and whether
orthonormality can be used advantageously. Recent experiments show a large
number of C∞ RBFs are indeed orthonormal. Orthonormality should help in the
optimization of the set of shape parameters for various PDE and IE applications.

The first, albeit primitive application was the solution of a 4D inviscid set of
Euler equations using MQ-RBFs and overlapping DDM. Because of the curse of
dimensionality, any regular meshing of a N-D problem encounters the dreaded
curse of dimensionality. Kansa and Geiser [37] found a scattered data distribution
can cover the 4D domain fairly well, but additional placement of data centers
where most needed in an adaptive manner will be required in multi-dimensional
regions where fine resolution is required. Note that with Franke’s [51] 2D test
functions, having only a few points in rapidly changing regions performs well;
dense coverings are overkill. In addition, serious multi-dimensional problems
will need to be solved on exascale parallel computers. As of November 2014,
China’s Tianhe-2 supercomputer is the fastest in the world at 33.86 quadrillion
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floating point operations per second. Domain decomposition implemented in
multi-dimensions will need to be studied well to achieve load balancing. Because
of the curse of dimensionality, it is vital to keep the total number of data centers to a
minimum because the quantum mechanical calculation of the electronic structure
of a rotating, vibrating, translating water molecule is a 9D problem. If there are
10 data centers per dimension, 109 data centers may still be a sparsely populated
problem. The unexplored question is for multi-dimensional problems is whether
sacrificing exponential spectral convergence of C∞ RBFs for sparsity worthwhile?
How can fast mutlipole expansions best be implemented? How can exponential
spectral convergence be maintained with domain decomposition? What trade-offs
are necessary to implement even a simple 6D Boltzmann equation. Is the only
alternative for multi-dimensional problems compactly supported RBFs or finite
differences with C∞ RBFs?

2. Optimal specification of the C∞ RBF shape parameter distributions

Meshless RBFs appear currently to be the best method of solving multi-dimensional
problems and the RBF community needs to pursue research and development in
this important area.
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