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Abstract 

The accurate evaluation of nearly singular boundary integrals is an important 
issue in BEM. Several techniques have been developed in recent years, with 
various degree of success, but it should be stressed that the boundary geometry is 
depicted essentially by using lower-order elements in those approaches. 
However, a high level of the geometry approximation in BEM is desired in many 
applications, and the usage of high-order elements can meet this requirement. In 
this study, we propose a general methodology for computation of the nearly 
singular integrals with using high-order surface elements in 3D BEM. Using two 
benchmark solutions for potential problems we demonstrate the high efficiency 
and the stability of the proposed scheme, even when the internal point is very 
close to the boundary. 
Keywords: BEM, nearly singular integrals, transformation, high-order geometry 
elements, potential problem. 

1 Introduction 

The BEM as an important technique has been widely used in many areas, but the 
accuracy of its calculation depends heavily on the accuracy and efficiency of 
the computation of integrals with singular and nearly singular kernels. These 
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kernels are weakly singular, strongly singular, or even hypersingular functions 
when the collocation point belongs to the integration elements, and many 
effective methods have been developed to handle them [1–3]. Another important 
issue is the integration of the kernels for the collocation points which are close to 
but not on the integration element. Then, the considered integrals, although 
regular in the sense of mathematics, are termed nearly weak singular, nearly 
strong singular and nearly hypersingular integrals since they exhibit similar 
characteristics of the singularity and generally cannot be calculated accurately by 
standard integration quadratures. This is so-called boundary layer effect in BEM. 
     In the past decades, tremendous effort has been devoted to derive convenient 
integral forms or sophisticated computational techniques for calculating the 
nearly singular integrals. These proposed methods can be divided on the whole 
into two categories: “indirect algorithms” [4, 5] and “direct algorithms” [6–19]. 
The indirect algorithms consist in indirect calculation or in avoiding calculation 
of the nearly singular integrals by establishing new regularized BIEs using the 
rigid-body displacement idea or other global regularization methods [4, 5]. The 
direct algorithms consist in calculation or approximation of the nearly singular 
integrals directly. They usually include interval subdivision [6], special Gaussian 
quadrature [7], analytical or semi-analytical [8, 9] and transformation methods 
[10–19]. At present, the most popularity of the “direct algorithms” are various 
non-linear transformations, for example, the cubic polynomial transformation 
[10], the bi-cubic transformation [11], the sigmoidal transformation [12], the 
semi-sigmoidal transformation [13], the coordinate optimal transformations [14], 
the degenerate mapping method [15], the rational transformation [16], the 
distance transformation [17], the sinh trans-formation [18], and the exponential 
trans-formation [19], etc. 
     Although great progresses have been achieved for each of the above methods, 
it should be pointed out that the geometry of the boundary element is depicted 
essentially by using lower-order shape functions when nearly singular integrals 
need to be calculated. In fact, to the authors’ best knowledge, no work is found 
in the literature that can be used to calculate the nearly singular integrals 
occurring on high-order geometry elements in 3D BEM effectively. However, 
the usage of high-order geometry elements for efficient evaluation of the nearly 
singular integrals is necessary in many cases. Clearly, the advantage of using the 
high-order geometry elements in complex geometrical domains does not concern 
only its power to achieve higher calculation accuracy, but even with a small 
number of computational elements. More crucial, computational models of thin 
structure problems demand a higher level of geometry approximation, and the 
usage of high-order geometry in computational model can meet this requirement. 
If the boundary geometry is depicted by using plane elements, the actual 
geometry of considered domain cannot be described faithfully, and thus lower-
order geometry approximation will fail to yield reliable results. In order to avoid 
such phenomena, very fine meshes must be used in these situations, but this 
yields too much preprocessing and prolongs the CPU time. In addition, a great 
number of elements will produce a lot of artificial corners. This is fatal to many 
engineering problems. 
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     On the other hand, it is well-known that the efficient estimation of nearly 
singular integrals over high-order geometry elements is a very difficult problem. 
When the geometry of the boundary element is approximated by using high 
order curved surface elements-usually of the second order, the Jacobian 

1 2( , )J    is not a constant but an irrational function, where 1 2,   are the 

dimensionless coordinates. The distance r  between the field point and the 

source point is an irrational function of the type 1 2( , )p   , where 1 2( , )p    is 

the high order polynomial. Thus, the integrands in boundary integrals become 
rather complex to treat the nearly singular integrals. 
     In this study, a general strategy is proposed for calculation of the nearly 
singular integrals occurring on high-order curved surface elements in 3D BEM. 
The paper is organized as follows: The regularized BIEs for indirect unknowns 
with excluding the CPV and HFP integrals are presented in Section 2. Then, in 
Section 3, the expression of the nearly singular integrals over the eight-node 
second-order quadrilateral surface elements is investigated, including the 
determination of the projection point and construction of the distance function. 
Section 4 introduces an exponential transformation to remove or reduce the near 
singularities of integrands for considered integrals. In Section 5, the accuracy 
and stability of the proposed scheme are tested in two 3D potential examples 
with known benchmark solutions. Finally, the conclusions are provided in 
Section 6. 

2 Regularized boundary integral equations (RBIEs) 

In this paper, we always assume that   is a bounded domain in 3R , c  is its 
open complement, and   denotes the common boundary. ( )t x  and ( )n x  are 

the unit tangent and outward normal vectors on   to the domain   at the point 
x , respectively. With omitting the body sources in potential problems, the 

regularized BIEs with indirect unknowns on ̂  can be expressed as 
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     For the internal point y , the integral equations can be written as 

 * ˆ( ) ( ) ( ) ,  
x

u u d


  y x x, y y  (3) 

 

 *( ) ( ) ( , )u u d


   y y xy x x y , ˆy  (4) 
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     In eqns (1)–(4), ( ) x  is the density function to be determined; * ( , )u x y  

denotes the Kelvin fundamental solution. For interior problems, ̂   , ˆ 1S  , 
ˆ( )n x  is the unit outward normal vectors on   to domain   at point x . For 

exterior problems, ˆ c   , ˆ 0S  , ˆ( )n x  is the unit outward normal vectors on 

  to domain c  at point x . 
     For the discretized form of eqns (3) and (4), when the field point y  is very 

close to the integration elements e , the integrals in discretized eqns (3)–(4) are 

nearly singular. These nearly singular integrals can be expressed as 

 ( , )
e

f x y
d

r
    (5) 

where 
2

r  x y , 0  is a real constant, and ( , )f x y  denotes a well-behaved 

function. 

3 Nearly singular integrals on paraboloidal surface elements 

In this paper, the geometry segment is modeled by a continuous paraboloidal 
element, which has eight knots, namely, the boundary geometry is approximated 
by the piecewise continuous eight-node second-order quadrilateral surface 
elements, while the distribution of the boundary quantities over each of these 
segments is approximated using discontinuous elements, eight nodes of which 
are located away from the edges of the element. 
     Assume 1 2 3( , , ), 1, ,8j j j jx x x j  x  are the eight knots of the segment j , 

then Cartesian coordinates of the points on the element j  can be interpolated as 
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 (7) 

3.1 Determination of the projection point 

The minimum distance d  from the field point y  to the integration element e  

is defined as the length py x , where px  is the projection point of y  onto 

integration element e . Letting 1 2( , )   be the local coordinates of the 
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projection point px , i.e. 1 1 2 2 1 2 3 1 2( ( , ), ( , ), ( , ))x x x     px , then 1 2,   are 

the real roots of the following equation 
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in which the summation convention is used, and 
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assumptions will be applied also in what follows unless specified others.  
If the field point y  is sufficiently close to the boundary  , then px  is inside the 

integration element, and eqn. (8) has a pair of the unique real roots 

1 2( , ) [ 1,1] [ 1,1]      . The real roots 1 2,   can be evaluated numerically by 

using the Newton’s method. Setting 
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     The formula of the Newton method can be expressed as 
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3.2 Form of distance function 2r  

1 2( , )kx    can be expressed as 
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thus, we have 
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where the summation rule is applied with respect to the Latin indices (taken from 
the range 1,2,3) and Greek indices (taken from the range 1,2)  
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     Recall that 0g  , since ( )p
k ky x is orthogonal to the element and ,kx  is 

tangential to the element at the projection point px . Thus, eqn. (11) can be 
rewritten as 

2 2
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3.3 Nearly singular integrals on the second-order elements  

By some simple deductions and based on the expression form (13) of the 
distance function 2r , the nearly singular integrals in eqn. (7) would be reduced 
to the following form 
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where ,A B  are two constants which are possibly different values in different 

integrals; ( )f   is a regular function that consists of shape functions, Jacobian 

and terms which arise from talking the derivative of the integral kernels. 
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4 Variable transformation  

In this paper, the exponential transformation can be expressed as follows 

 1 2 1 2( 1), ( 1), 1 1, 1 1m m s n n tx d e y d e s t            (15) 

where 1 2 1 2

1 1
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2 2
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d d
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     Substituting (15) into eqn. (14), we obtain the following equation 
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with x and y being given by eqn. (15). 

5 Numerical examples  

In this section, two benchmark numerical examples of 3D potential problems are 
examined to verify the methodology developed above. 
     The numerical solution accuracy at single computed point is assessed by 
means of the relative error defined by  

exa num

exa

I I
RE

I


  

where numI  and exaI  denote the numerical and exact value at the evaluation 

points, respectively. Furthermore, the average relative error (ARE) of the 
multiple computational results is defined by  

1

1
( )

N

j

ARE RE j
N 

   

where ( )RE j  denotes the relative error at the jth evaluation point, N is the 

number of the interior evaluation points. 
     In what follows, d  denotes the distance between the evaluation point and the 
integration boundary element. 
 
Example 1 As shown in Fig. 1, this example concerns a three dimensional 
spherical structure with radius 1.0. The prescribed temperature on the boundary 
is 

2 2
1 2 1 32 2 2u x x x x     
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Figure 1: Discretization of a unit sphere with 100 second-order surface 
elements. 

     The spherical surface is divided into one hundred surface elements of the 
second-order, and the same type of discontinuous interpolation shape functions is 
adopted to approximate the boundary functions. The numerical solutions for the 
potentials u , and its derivatives 1u x   (in the 1x  direction) at internal points 

are listed in Tables 1 and 2, respectively, hence we can see that when the 
evaluation points are not too close to the boundary, both the methods with and 
without transformation of the integration variables are effective and can give 
acceptable results. As the evaluation point approaches the boundary element of 
integration, i.e., when the distance of the internal point from the integration 
element is equal to or less than 0.001, the results of the conventional method 
become less satisfactory. On the other hand, the results of the proposed method 
are still steady and satisfactory even when the distance of the evaluation point to 
the integration element reaches 1E-10. This can be seen from the relative errors 
with respect to the exact solutions which are also shown in Tables 1 and 2 and 
demonstrate the efficiency and the usefulness of the developed algorithm. 

Table 1:  Potentials u  at internal points increasingly close to the boundary. 

Distance d Exact No transform 
Present 

Numerical Relative error 
0.1 0.220322E+01 0.220359E+01 0.220161E+01 0.560426E-03 
0.01 0.246821E+01 0.247862E+01 0.246719E+01 0.412683E-03 
0.001 0.249516E+01 0.247213E+01 0.249422E+01 0.376121E-03 
0.0001 0.249785E+01 0.246942E+01 0.249693E+01 0.372091E-03 
0.00001 0.249815E+01 0.246912E+01 0.249722E+01 0.371644E-03 
0.000001 0.249815E+01 0.246909E+01 0.249723E+01 0.371656E-03 
0.0000001 0.249777E+01 0.246908E+01 0.249680E+01 0.371705E-03 
0.00000001 0.249815E+01 0.246908E+01 0.249723E+01 0.371886E-03 
0.000000001 0.249815E+01 0.249722E+01 0.249680E+01 0.372194E-03 
0.0000000001 0.249815E+01 0.246908E+01 0.249722E+01 0.372679E-03 
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Table 2:  Potential derivatives 1u x   at internal points increasingly close to 

the boundary. 

Distance d Exact No transform 
Present 

Numerical Relative error 
0.1 0.289926E+01 0.291036E+01 0.289666E+01 0.895529E-03 
0.01 0.298939E+01 0.250781E+01 0.299727E+01 0.263732E-02 
0.001 0.299839E+01 -0.271481E+01 0.300834E+01 0.331862E-02 
0.0001 0.299929E+01 -0.329685E+01 0.300945E+01 0.339014E-02 
0.00001 0.299938E+01 -0.335008E+01 0.300957E+01 0.339736E-02 
0.000001 0.299938E+01 -0.335535E+01 0.300958E+01 0.339799E-02 
0.0000001 0.299939E+01 -0.335587E+01 0.300957E+01 0.339517E-02 
0.00000001 0.299939E+01 -0.335593E+01 0.300945E+01 0.335724E-02 
0.000000001 0.299939E+01 -0.335593E+01 0.300938E+01 0.333110E-02 
0.0000000001 0.299939E+01 -0.335593E+01 0.300922E+01 0.328025E-02 

 
Example 2 The second example concerns a problem in a torus centered at origin, 
as shown in Fig. 2, with the exterior radius and interior radius being 3R   and 

1r  , respectively. The parametric equation of the boundary surface is 

1 2 3( cos ) cos , ( cos )sin , sin

0 2 , 0 2

x R r x R r x r    
   
    

   
 

     The prescribed potential distribution along the boundary is  
2 2

1 3 1 2 2 3 2u x x x x x x     . 

 

Figure 2: Discretization of the torus with 80 second-order surface elements. 

     To solve this problem numerically the boundary is discretized by eighty 
second-order quadrilateral surface elements. Near each boundary element, one 
interior point is chosen, and thus a total of 80N   interior points are taken into 
account. The average relative error curves of the computational results for the 
potentials u  and its partial derivatives 1u x   at these points are shown in 

Figs 3 and 4, respectively. Hence it can be seen that when the evaluation points 
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are not too close to the integration element ( 0.1d  ), the conventional method 
and the proposed method are both efficient, but the conventional method fails as 
the evaluation points are closer to the boundary. On the other hand, the results 
obtained by the proposed method are stable and satisfactory even when the 
distance of the evaluation point to the integration element is equal to 1.0E 9  or 
even smaller. 
 

 

Figure 3: AREs of the potentials u  at interior points approaching to the 
boundary. 

 

Figure 4: AREs of the fluxes 1u x   at interior points approaching the 

boundary. 

6 Conclusions  

In this paper, a general scheme is proposed in order to calculate the nearly 
singular integrals occurring on high-order geometrical elements, which arise in 
the regularized indirect BIEs formulation. The new distance function 2r  is 
constructed when the high-order surface elements are adopted for modeling the 
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boundary geometry, and then a nonlinear transformation, based on the 
exponential functions, is introduced to remove the near singularities of the 
integrals before applying the standard Gaussian quadrature to numerical 
integration. Three numerical examples with exact benchmark solutions are 
presented to test the proposed scheme, yielding very promising results even 
when the distance between the evaluation point and the integration element is as 
small as 1.0E 9 . The results verify the feasibility and the effectiveness of the 
proposed scheme, with eliminating the boundary layer effect in the regularized 
BEM formulation.  
     Compared with existing approaches, the presented scheme makes the first 
attempt to evaluate the nearly singular integrals arising in the regularized indirect 
BEM formulations when the high-order quadrilateral surface elements are used. 
     The proposed scheme also can be applied to other problems in BEM, such as 
sensitivity analyses, contact problems, and thin-body problems. Some work for 
thin structures is already underway and will be reported in a subsequent paper. 
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