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Abstract 

Multiple bubble dynamics is analysed involving interactions between bubbles 
and also between bubbles and adjacent boundaries. In the current work, the 
adaptive cross approximation (ACA) BEM model is employed to study a 
“bubble cloud”. Three major factors are discussed, i.e., the presence of an 
adjacent solid wall and bubble volume fraction. The impact of the cloud on 
surrounding boundaries is studied. 
Keywords: multiple bubble dynamics, bubble cloud, adaptive cross 
approximation, boundary element method. 

1 Introduction 

The numerical study of a number of bubbles has been documented before. 
Chahine performed a simulation with 21 bubbles using a BEM code called 
3DynaFS [1]. By using a fast approach i.e. FFTM clustering, Bui et al. [2] 
modelled the evolution of up to 25 bubbles in a plane. The current authors also 
developed a fast approach for bubble dynamics based on the adaptive cross 
approximation (ACA) approach, leading to the ACA/BEM model [3]. However, 
the physics of multiple bubble dynamics has not been well studied due to the 
prohibitively expensive computational cost of the relatively large-scale problems 
and manifested randomness of evolution of each individual bubble. 
     In the current work, we studied the physical behaviour of multiple bubbles 
under the excitation of ultrasound. Three factors including the presence of a 
nearby wall and bubble volume fraction are discussed. Potential contour and the 
distribution of kinetic energy density are introduced to help analyze the 
dynamics of liquid flow within the cloud. The numerical simulations are based 
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on the ACA/BEM model. Results of modelling including up to one-hundred 
bubbles are presented.   

2 Theoretical formulations for the ACA approach 

Bubbles are assumed to be in a potential flow, which satisfies the Laplace 
equation, i.e. Δϕ ൌ 0 (where ϕ is the velocity potential). The harmonic function 
ϕ can be represented by a potential distribution [4]. Applying the single-layer 
potential yields: 

  ϕሺݔሻ ൌ න σሺξሻGሺݔ, ξሻdsሺξሻ
பஐ

, (1) 

where ∂Ω is the manifold of the flow domain. x and ξ are a source point and an 
integration point, respectively. In the Թଷ space, the fundamental solution of the 
Laplace equation G(x, ξ) takes the form: 

  Gሺݔ, ξሻ ൌ 1 ݔ| െ ξ|⁄ . (2) 

     The system matrix generated by eqn. (1) can be partitioned into a number of 
admissible submatrices. Then, the ACA algorithm is applied to produce a 
representation of each m×n admissible submatrix efficiently, leading to 
O((m+n)r2) operations and O((m+n)r) memory consumption (where r is the rank 
<<Min(m,n)). The reader is referred to [3] for the details of the ACA approach in 
bubble dynamics. In this work, the ACA algorithm [3] is extended and its 
performance improved.  
     Eqn. (1) implies that the collocation scheme is employed for the assembly of 
the algebraic system. Surface integration might dominate the assembly process, 
taking the majority of the required CPU time [5]. The direct application of      
Algorithm 1 for an m×n submatrix ࣧ from the system matrix, i.e. ࣥ=	ࣧ, 
requires computation of O((m+n)r) surface integrations.  
     Algorithm 1: The ACA algorithm [3]. 
     Let ࣥ be the m×n admissible matrix in accordance with the pair of source 
and integration node sets (X, Ξ), and ࣬ be of the same size as	ࣥ. ࣣ is the identity 
matrix and ࣣ୩ is denoted as the k-th column vector of ࣣ.	࣬ ൌ ࣥ, i1=1. For k=0, 1, 
2, …, compute  

୧ࣣౡశభ
୘ ࣬ ൌ ୧ࣣౡశభ

୘ ࣥ െ ࣯୧ౡశభ,భ:ౡ ଵࣰ:୬,ଵ:୩
୘ ; 

Max ቄቚ࣬୧ౡశభ,ౠቚቅ ሺ് 0ሻ → j୩ାଵ; 

ଵࣰ:୬,୩ାଵ
୘ ൌ ୧ࣣౡశభ

୘ ࣬/࣬୧ౡశభ,୨ౡశభ; 

࣯ଵ:୫,୩ାଵ ൌ ࣥ ୨ࣣౡశభ െ ࣯ଵ:୫,ଵ:୩ ୨ࣰౡశభ,ଵ:୩
୘ ; 

cୱ୲୭୮ ൌ εୟฮ࣯ଵ:୫,ଵ:୩ ଵࣰ:୬,ଵ:୩
୘ ฮ

୊
െ ฮ࣯ଵ:୫,୩ାଵฮ୊ฮ ଵࣰ:୬,୩ାଵฮ୊, (cୱ୲୭୮ ൐ 0, ܱܵܶܲ); 

Max൛ห࣯୧ஷ୧ౡశభ,୩ାଵหൟሺ് 0ሻ → i୩ାଶ. 

(εୟ is the prescribed precision for the algorithm.) 
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     Alternatively, Algorithm 1 is applied for ࣥ ൌ GሺX, Ξሻ instead of the defined 
submatrix ࣧ above. Surface integrations are only required in the chosen r rows. 
The modified ACA algorithm (i.e. ACA+) is presented in Algorithm 2, which 
demonstrates O(nr) surface integrations, compared with O((m+n)r) when only 
the ACA algorithm is applied. 
     Algorithm 2: The ACA+ algorithm. 
     Let ࣧ be an m×n admissible block from the system matrix with the source 
node set X and the integration node set Ξ (m=#X, n=#Ξ), and ࣥ ൌ GሺX, Ξሻ. 
     Conduct the ACA algorithm for ࣥ and record row indices i1:r and column 
indices j1:r; 

ଵࣥ:୫,ଵ:୰
ᇱ : ൌ ଵࣥ:୫,୨భ:౨; 

ଵࣱ:୰,ଵ:୰: ൌ ୧ࣥభ:౨,୨భ:౨; 

ଵࣧ:୰,ଵ:୬
ᇱ : ൌ ୧ࣧభ:౨,ଵ:୬; 

ࣧ ൎ ࣥᇱࣱିଵࣧᇱ ൌ ࣝࣧᇱ, with ࣝ ≔ ࣥᇱࣱିଵ. 

3 Results and analysis 

We apply the ACA/BEM model to simulate the evolution of the group of 
bubbles, denoted as “bubble cloud”, and study the dynamics of liquid within the 
cloud. 
     Our simulations start with the generation of a number of bubbles that are 
populated randomly in a cube filled with ethanol. The parameter “bubble volume 
fraction”, i.e. β, is introduced as the ratio between the aggregate volume of 
bubbles and the cubic volume Vc:  

  β ൌ ∑ Vୠ,୧
୬ౘ
୧ Vୡ⁄ , (3) 

which indicates the population density of bubbles within the liquid. The 
characteristics of a bubble cloud can be analysed using two parameters: i.e. 
distributions of velocity potential ϕ and kinetic energy density Ek. The density of 
kinetic energy Ek is defined as: 

  E୩,ୢ ൌ
ଵ

ଶ
ρ୐|υሬԦ|ଶ. (4) 

     Higher Ek,d suggests higher rate of liquid flow at the corresponding location. 

3.1 The presence of a solid wall 

The presence of a solid boundary near a bubble cloud leads to a half-space 
problem. When the cloud is close enough, the evolution of bubbles might be 
affected by the wall. Figure 1 presents a group of twenty-five bubbles along a 
plane z=0. These bubbles of a uniform initial size R0=10 μm are randomly 
distributed with bubble volume fraction β=1.0%. The bubble evolution is driven 
by an acoustic wave of f=20 kHz. Physical parameters used in the simulation of 
the bubble evolution are presented in Table 1.  
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Table 1:  Physical parameters used for the study of multiple bubble 
dynamics.  

Initial vapour pressure pv0 (Pa) 29,356.9 Liquid density ρL (kg·m-3) 766 

Initial gas pressure pg0 (Pa) 71,968.1 Initial velocity potential ϕ଴ 0 

Gas ratio of specific heat γg  1.4 Wave frequency f (kHz) 20 

Vapour ratio of specific heat γv 1.13 Wave amplitude pamp (MPa)1.0 

Liquid temperature Ta (°C) 50 Wave phase θ π/2 

Initial bubble size R0 (μm) 10 Wave source location xs (m)(10-3, 0, 0) 

 

 

Figure 1: Twenty-five randomly distributed bubbles, each with R0=10 μm in 
a volume of liquid (β=1.0%). 

     The wave of f=20 kHz proves to be a subresonant wave condition since an 
immediate collapse of some bubbles is seen at the end of simulation t=0.6086 μs. 
Figure 2 presents the results at the instant of t=0.6086 μs. The differences in 
distributions of potential and kinetic energy density are comparable when the 
bubble cloud is in an open field and when it is adjacent to a solid wall (i.e. z=0). 
     Velocity potential distribution can help to identify the interactions between 
bubbles. The negative values of potential for both cases in Figure 2(a) and (b) 
imply a general process of bubble size decrease at the instant. Evident potential 
gradients can be observed in liquid close to bubbles. In (a), areas on the side of 
the cloud are hardly affected by the evolving bubbles as approximately “zero” 
potential can be seen. By contrast, the dominant higher absolute values of 
potential in (b) suggest that a larger volume of liquid is influenced by the 
evolving bubbles. With respect to kinetic energy density Ek, less evident 
difference between Figure 2(c) and (d) can be seen. High values in a long and 
narrow area of the wall surface demonstrate notable impacts of the solid wall 
when the liquid is close (see Figure 2(d)). 
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(a)                                                               (b) 

   
 (c)                                                               (d) 

Figure 2: Distributions of ϕ and Ek,d in a bubble cloud of 25 bubbles at 
t=0.6086 μs. (a) ϕ (no wall); (b) ϕ (near a wall); (c) Ek,d (no wall); 
(d) Ek,d (near a wall). 

     The kinetic energy and the Kelvin impulse are presented in Figure 3. The 
kinetic energy Ek experiences an increase from zero, owing to the excitation by 
the acoustic wave. Towards the end of the bubble collapse, the increase in the 
internal pressures slows down the evolution process, thereby reducing Ek. The 
variation of Ek also shows a slow-downward process with the presence of the 
solid boundary. With respect to the Kelvin impulse, the most evident difference 
is observed in the z-direction. The presence of the boundary leads to higher 
impulse towards the wall. By comparing the scale of the Kelvin impulse it is 
found that the differences in the Kelvin impulse in the x- and y-directions are 
negligible. 

  
(a)                                                               (b) 

Figure 3: Variations of the kinetic energy and Kelvin impulse with and 
without the presence of a solid wall. (a) Ek; (b) Kx, Ky and Kz. 
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3.2 Bubble volume fraction 

The volume fraction of bubbles in liquid β specifies the average distance 
between bubbles when the number of bubbles is fixed – the higher β corresponds 
to the denser population of bubbles within a cloud. Bubbles with sufficiently 
high β yield strong interactions between each other, owing to the close distances.  
     To study the impacts of bubble volume fraction on the dynamics of a bubble 
cloud, we introduce an example of 50 randomly distributed bubbles in a volume 
of liquid. Figure 4 (a) and (b) illustrate the bubble clouds for the case of β=1.0% 
and 5.0%, respectively. A solid boundary is present at the bottom at a distance of 
20 μm from the nearest boundary of the liquid volume. The same physical 
parameters as in  are used in the simulations.  

   
(a)                                                               (b) 

Figure 4: Fifty bubbles of R0=10 μm randomly distributed in a volume of 
liquid with a solid wall at z=0 μm. (a) β=1.0%; (b) β=5.0%. 

     Bubbles experience collapse under the prescribed wave condition and the 
distributions of the potential and kinetic energy at t=0.7825 μs are presented in 
Figure 5. Both cases show significant variations in the potential on the side of the 
cloud compared to the areas in the middle. The liquid is expected to be flowing 
into the cloud’s area as the potential increases with the distance from the cloud 
centre. The larger range of potential values, i.e. -5×10-4–-2.5×10-4 m2/s can be 
observed for the case of β=5.0%, which indicates higher interactions of bubbles.  
     The contours of Ek,d in Figure 5 (c) and (d) show high concentration of kinetic 
energy in liquid areas surrounding the bubbles. On the side of bubble cloud, the 
predominant Ek,d of O(103.5) for the case of β=5.0% versus O(102.5) for the case 
β=1.0% implies faster liquid flow towards the cloud when bubble volume 
fraction increases. Due to the limited gap in the bubble cloud, liquid with high 
bubble volume fraction may show slower velocity, as is seen in Figure 5 (d) of 
low Ek,d in some areas of the middle plane. Figure 6 presents the velocity contour 
on the surface of the solid wall. Flowing liquid with the velocity range of 0.10–
2.33 m/s, for the case of β=5.0%, versus 0.02–1.92 m/s, for the case of β=1.0%, 
demonstrates enhanced impacts on the wall when bubbles are populated with 
higher volume fraction.  
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(a)                                                               (b) 

   
(c)                                                               (d) 

Figure 5: Distributions of ϕ and Ek,d in bubble clouds of different β (t=0.7825 
μs). (a) ϕ (β=1.0%); (b) ϕ (β=5.0%); (c) Ek,d (β=1.0%); (d) Ek,d 

(β=5.0%). 

  
 (a)                                                               (b) 

Figure 6: Velocity distributions in bubble clouds of different β (t=0.7825 μs). 
(a) β=1.0%; (b) β=5.0%. 
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4 Conclusions 

Numerical modelling of multiple bubble dynamics has been carried out. The 
impacts of a cloud of bubbles on surrounding liquid have been discussed by 
analysing the distributions of potential and density of kinetic energy. The 
presence of a solid boundary appears to improve interactions within a bubble 
cloud which is manifested in a higher variation of potential. Also, the more 
evident density of kinetic energy indicates that liquid flow on the surface of the 
solid boundary is significantly accelerated. The bubble volume fraction can be 
used to indicate the strengths of interactions between bubbles and impacts on the 
adjacent boundary. Owing to relatively closer distances with higher volume 
fraction, bubbles within the cloud have stronger influences on each other and a 
higher speed of liquid flow can be seen on the boundary surface.  
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