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Abstract 

The boundary element method (BEM) is one way for solving the normal flow 
boundary conditions (potential flow problem) and the pressure distribution in 
numerical simulation of the three-dimensional vortex method. Because the 
problem can be reduced from a three-dimensional integral to a two-dimensional 
integral by BEM, this method is acclaimed in this study. BEM in engineering 
calculations already has a good application, but with the increasing number of 
grid problems, the dense matrix generated in the conventional boundary element 
method (CBEM) is increasing sharply. The fast multipole method (FMM) is 
introduced to accelerate the computational efficiency and speed of BEM. The 
three-dimensional vortex method requires solving the velocity and the velocity 
gradient of potential flow by BEM, and then it will encounter strongly singular 
integrals. The semi-analytical integral regularization algorithm is applied for 
solving strongly singular integrals in this paper. The regularization fast multipole 
boundary element method (FMBEM) is applied to the potential problem of flow 
over a single sphere, and analyze the results to prove the reliability and 
efficiency of this method. The calculation parameters which are selected by 
comparing the influences of them in the single sphere problem are applied to the 
potential problem of flow over multi-spheres, and the results are analyzed. 
Keywords:   BEM, FMM, regularization algorithm, potential problem. 
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1 Introduction 

For solving the normal flow boundary conditions in the three-dimensional vortex 
method, we need to work out the potential flow problem [1]. The potential flow 
problem can generally be described by a Laplace equation or Poisson equation. 
They can be solved by the finite difference method (FDM), finite element 
method (FEM) or boundary element method (BEM). Relatively, BEM has the 
following advantages: BEM is a semi-analytical method, so it has a 
higher accuracy; distributed discrete elements are only on the boundary of the 
physical model, so it can reduce to one-dimension, and the number of 
the unknowns [1, 5].  
     BEM in engineering calculations already has a good application, but with the 
increasing number of grid problems, the dense matrix generated in the 
conventional boundary element method (CBEM) is increasing sharply [1, 3, 4]. 
This matter not only increases the amount of calculation storage and reduces the 
computational efficiency, but it also cannot be solved in a general computer. 
Taking into account the fundamental solution in a BEM and N-body problem has 
the same mathematical model, so the fast multipole method (FMM) in an N-body 
problem is introduced to accelerate the computational efficiency and speed of 
BEM.  
     The three-dimensional vortex method requires solving the velocity and the 
velocity gradient of potential flow by BEM, and then it will encounter strongly 
singular integrals. The semi-analytical integral regularization algorithm is 
applied for solving strongly singular integrals in this paper.  
     The potential flow problem of flow over a sphere is a classical problem with 
an analytical solution, so the validity of the regularization fast multipole 
boundary element method (FMBEM) is checked by simulating this problem. The 
analyses of the numerical results prove the reliability and efficiency of 
the present method. The calculation parameters of FMM which are selected by 
comparing the influences of them in the single sphere problem are applied to the 
potential problem of flow around multi-spheres, and the numerical results are 
analyzed. 

2 Fast multipole boundary element method 

2.1 Conventional boundary element method 

There are three ways to prove BEM: one is the weighted residual Galerkin 
method which translates the differential problem to an integral equation; a more 
rigorous method is solving the functional extremum in a variational method. 
Another more direct approach is starting from Green's theorem, which translates 
the domain integral to the boundary integral [5]. Here, the last method is used. In 
a potential flow problem, the potential field   in domain is described by the 
Poisson equation as below:  
 

0f             (1) 
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where f is a known function in domain, and it assumes f = 0 here. And the 
boundary conditions (BCs) are:  
 

=         Dirichlet Boundary Condition 

q q


 
n

  Neumann Boundary Condition 

 
where q is the normal velocity on the surface. Here, we take the Neumann BC.  
     Eq. (1) can be reformulated in the following boundary integral form [4]:  
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where  , 1 4G G   x y x y is the three-dimensional Green function, 

   , ,F G   yx y x y n  is its normal flux, and coefficient ( ) x  is: 
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where ( ) x is a solid angle on the boundary surface, and ( ) 1 2 x if S is 
smooth around x . 
     Once the boundary values of both   and q are known, we can calculate   
everywhere in domain by Eq. (2), if needed. To solve the unknown boundary 
values, we let x  tend to the boundary S to obtain an equation from Eq. (2). Then 
we apply collocation techniques to discretize the integral in order to solve them 
numerically. The discrete boundary integral Eq. (2) yields:  
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where K is the number of local nodes on each element, NE is the number of 
elements, NP is the number of nodes, Nk is the shape function.  The two integrals 
which are singular at r = 0 of O(r-1) and O(r-2) can be solved by sub-element 
method [5] in Eq. (4).  
     The quadrilateral four-node elements are taken and the four shape functions 
are:  
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Simplifying Eq. (4), we have:  
 

   H B          (6) 

 
The boundary potential values of nodes can be solved by linear Eq. (6).  
     To evaluate the potential velocity (the derivatives of the potential) in V, we 
take the derivative of Eq. (2) to obtain:  
 

( , ) ( , )
( ) ( ) ( ) ( ) , 1,2,3k n
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2.2 Fast multipole method 

The matrix H  of Eq. (6) is dense matrix, so the amount of calculation operation 
increases 2( )O N  with the mesh number N. FMM, which is an acceleration 
method, is due to the fact that the Green’s function can be expanded in the 
following form [3, 4, 7]:  
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where cy  is the expansion center close to the field point y . The two functions 

, ( )n mR x  and , ( )n mS x  are called solid harmonic functions, given by: 
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where ( , , )    are the coordinates of x  used in a spherical coordinate system. 

m
nP is the associated Legendre function, and it is about the Legendre polynomials 

nP  of degree n. 

     By using Eq. (8), we can write the original integral as:  
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     When the multipole expansion center is moved from cy  to 'cy , we apply the 

following M2M translation:  
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which is also valid for ,n mM . 

     The local expansion for Eq. (9) and Eq. (10) is given as:   
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     When the local expansion center is moved from cx  to 'cx , we apply the 

following L2L translation:  
'
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which is also valid for ,n mL . 

     Eq. (6) can be rewritten as:  
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By Eq. (19), the estimated cost of FMBEM is reduced to O(N). A hierarchical 
cell structure covering all of the boundary elements is used in this paper.  
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2.3 Regularization of the singular integral 

From Eq. (7), the potential velocity equation can be reformulated as:  
 

3 3 5
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     In Eq. (20), the integrals are singular at 0r   of 3( )O r   and 5( )O r . When 

the point y  is far from the boundary, Gaussian integral formula can be directly 
used to calculate the potential velocity. As y  approaches the boundary, the sub-
element method is invalid for this strongly singularity. We use the regularization 
algorithm to solve the integrals.  
     As shown in Figure 1, a quadrilateral isoparametric element 1234 is divided 
into two triangular sub-elements 123 and 134.  A local orthonormal 

coordinate system o  is assigned to 123.  We assume the pedal of point y  

on the surface of element 123  is 0y , and a polar coordinate system   is set 

up with 0y  as the origin and the initial position of the polar axis is parallel with 

o  on the plane. Therefore we have:  
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Figure 1: Boundary elements and three reference frame systems. 

The shape function and geometrical coordinates for the element 123  are [8, 
9]:  
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 1
( , ) cos sin    , 1, 2,3

2i m mi m m mi oix N x b c x y i m
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where A  is area of 123 , , ,m m ma b c  are coefficient of  ,i i  . 

     By equation (22b), we have:  

 1
cos sin

2i i i m m mi oi ir x y b c x y y
A
          (23) 

2 2 2
1r e   

where 1 oe  y y  is the smallest distance from the source point to e . We 

have the area equation of e : 

 
d d d d d        

 
Substituting the upper equations into Eq. (20), the integrals can be summarized 
as:  
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Q
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where ( , )nQ    is about ,cos ,sin   . 

     When 1e  is small, Gauss numerical integration fails. So small 1e  is the main 

reason causing the singular integral. First, Eq. (24) is taken integral by variable 
 , and we have:  

( , )
( , ) 1,3,5,7n

n n

Q
K d n

r

        (25) 

Subsection integral is repeatedly used to Eq. (25), we have a completely 
analytical formula for ( , )nK    can be obtained. Eq. (24) is calculated as:  
 

2

1

( )
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e
n nI K d

  

  
  


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where 1( )  and 2( )   are decided by three lines 12,23,31.The strongly singular 

integrals of Eq. (20) are translating to a series of linear integrals to  , and they 
can be calculated by the Gauss method. 

3 Numerical results and analyses 

3.1 Simulation of flow over a sphere 

The potential flow problem of flow over a sphere is a classical problem with an 
analytical solution, so the validity of the regularization FMBEM is checked by 
simulating this problem.  
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     For a sphere with radius a  immerged in a uniform flow U , the potential in 
spherical coordinates of steady flow at the origin is:  
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and the potential velocity is 
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Assume that 1U   with x  direction and 1a  . To calculate numerical errors 
conveniently, we only consider the potential function of the dipole in Eq. (29) 
and Eq. (30). Figure 2 shows that the distribution of potential with 

(0 ,360 )o o   on the 2   plane by three methods.  
 
 

 

Figure 2: Distribution of potential vs. plane azimuth. 

 
     Table 1 shows that   standard error comparison between the regularization 
scheme and the Gaussian method. d is the distance from source point to the 
sphere surface. For convenient analysis, we define that /d a   is the proximity. It 
can be seen that / 0.1d a    is a critical point. When / 0.1d a  , the accuracy of 
the two methods are close. As / 0.1d a   the accuracy of the Gaussian method 
deteriorates significantly. As / 0.001d a   the Gaussian method is invalid, but 
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the regularization technique can calculate the potential with high accuracy  
(O(10-2)). Figure 3 shows that the potential velocity field on the z = 0 plane. 

Table 1:    error comparison between regularization scheme and Gaussian 
method. 

Distance d Gauss Method (%) 
Regularization Algorithm 

(%) 
1.00 1.01 1.01 

4.64E-1 1.01 1.01 
2.15E-1 1.02 1.02 
1.00E-1 1.87 1.87 
4.64E-2 36.52 2.14 
2.15E-2 653.95 0.31 
1.00E-2 4941.23 1.87 
2.15E-3 29085.51 1.28 
1.00E-3 36452.07 1.83 
4.64E-4  2.51 
2.15E-4  3.66 
1.00E-4  3.50 
1.00E-5  5.21 
1.00E-6  1.14 

 

 
 

Figure 3: Potential velocity field on z=0 plane. 
 

3.2 Analyses of FMBEM  

In this part, we analyze the effect of FMM parameters and choose the proper 
parameters for complex problems. Figure 4 shows the CPU time comparison 
between BEM and FMBEM. It can see that FMBEM can accelerate computing 
speed significantly when the mesh number is great. 
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Figure 4: CPU time comparison by BEM and FMBEM. 

     p is the expansion coefficient of FMM. Figure 5 is the analysis of the effect of 
p. The dash lines are a series of potential root-mean-square errors vs. different p 
from 5 to 40. The solid lines are a series of CPU time vs. different p. CPU time 
increases exponentially with the increase of p. The errors decreases with the 
increase of p. Considering the time and accuracy, we choose p =15~30. 
 
 

 

Figure 5: Analysis of the effect of FMM expansion coefficient p. 

     s is the max number elements in one cell. Figure 6 is the analysis of the effect 
of s. The dash lines are a series of potential root-mean-square errors vs. different 
s from 5 to 40. The solid lines are a series of CPU time vs. different s. CPU time 
increases exponentially with the increase of s. The errors decreases with the 
increase of s. s = 20 is an inflection point for root-mean-square errors. 
Considering the time and accuracy, we choose s = 10~20. 

3.3 Multi-spheres results 

The present method is applied to flow over multi-spheres potential problems. 
The FMM parameters are chosen by p = 20 and s = 15. The numerical results 
of two spheres and four spheres are shown below. Figure 7 is the comparisons of 
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Figure 6: Analysis of the effect of FMM element coefficient s. 

CPU time and root-mean-square errors between BEM and FMBEM of potential 
on boundary surface with different mesh numbers. It can see that FMBEM can 
accelerate computing speed significantly when the mesh number is great. And 
the potential of BEM and FMBEM is close to O(10-3). Figure 8 shows that the 
potential velocity field of two spheres and four spheres problems on z = 0 plane. 
 

 
  (a)               (b) 

Figure 7: The comparison of CPU time and errors by BEM and FMBEM. 

    
          (a)     (b) 

Figure 8: Potential velocity field of multi-spheres on z = 0 plane. 
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4 Conclusion 

In this paper, we propose a more efficient comprehensive numerical hybrid 
method, the regularization FMBEM, for the potential flow problem in the three-
dimensional vortex method. This paper gives a theoretical derivation of the 
numerical method, and this method can accelerate the computing time of 
conventional BEM, and calculate the strongly singular integrals. 
     The present method is applied to the potential flow over sphere. Through the 
numerical results, we verify the effectiveness of the regularization FMBEM. 
Analyze the effect of FMBEM parameters to CPU time and accuracy, and 
choose the proper parameters for the potential flow over complex shapes, such 
as, the potential flow over two spheres and four spheres. 
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