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Abstract 

The fast multipole boundary element method (BEM) based on both singular and 
hypersingular boundary integral equations (BIEs) for 2-D elasticity is applied to 
study 2-D multiple crack problems in this work. For multiple crack problems, the 
degrees of freedom (DOFs) and the size of the matrices can increase quickly as 
the number of cracks increases, which prohibits the use of the conventional 
BEM. In this study, constant line elements are used to discretize the crack 
surfaces and other boundaries. There is no use of the special quarter-point 
elements at crack tips in the present approach. To account for the need for 
accuracy, a relatively larger number of constant elements is required on the 
surfaces of cracks. By applying the fast multipole BEM, the increased 
computational work can be dealt with readily on desktop PCs. Results of the 
computed stress intensity factors using crack opening displacements (CODs) 
near the crack tips are presented in this paper. It is found that the fast multipole 
BEM with constant elements can predict the stress intensity factors of cracks in 
2-D plates with sufficient accuracy and efficiency.  
Keywords: fast multipole boundary element method, 2-D crack problems, 
constant boundary elements, stress intensity factors. 

1 Introduction 

Engineering materials often contain multiple cracks, such as ceramics, concretes, 
brittle materials, aircrafts as well as earthquakes. The elastic behavior and 
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fracture characteristics of elastic solids with multiple cracks need to be studied, 
where the present of cracks is a common reason for the failure of materials which 
has always been a challenge for researchers and engineers. The fundamental 
postulate of linear elastic fracture mechanics (LEFM) is that the crack behaviors 
are determined by the value of stress intensity factors (SIFs) at the crack tips, 
which is a function depends on the applied load, the crack size and the geometry 
configuration of the cracked plate. Since Irwin first postulated that the crack 
behavior is determined by the value of SIFs at the crack tips, the computation of 
SIFs has been playing a very important role in linear elastic fracture mechanics. 
However, due to their complexity, the computation of crack behaviors has been a 
challenge for researchers, and many multiple crack problems still have not been 
solved by using analytical methods. 
     The boundary element method (BEM) has been considered to be 
advantageous in solving LEFM problems [1, 2], because of its boundary 
discretization nature. However, while the BEM has enjoyed the reputation of 
easy meshing in modeling, the efficiency and computation storage have been a 
serious concern for analyzing large-scale problems because of its dense and 
asymmetric coefficient matrix. To reduce the CPU time and memory storage, the 
fast multipole method (FMM) proposed by Greengard and Rokhlin [3] has been 
applied to the BEM for more than two decades, leading to the so-called fast 
multipole BEM. The fast multiple BEM and its applications were developed 
intensively by many researchers in the last two decades [4, 5]. 
     For multiple crack problems, it is well-known that the size of the matrices can 
be very large as the number of cracks increases. Because of this, multiple crack 
problems usually need large BEM models, possibly millions of degrees of 
freedom (DOFs) in some large-scale cases, which can lead to a time-consuming 
calculation on desktop PCs. To reduce the CPU time and memory storage, the 
fast multipole BEM is applied for solving multiple crack problems in the present 
paper. Firstly, the outer boundary and crack surfaces of the model are discretized 
in the same way as in conventional BEM. Secondly, a quad-tree structure is 
constructed. Then the multipole expansion and local expansion of the kernel 
functions are used and the generalized minimal residual method (GMRES) is 
applied as the iterative solver to obtain the unknowns on boundaries. The CPU 
time and memory storage in most cases can be reduced to about O(N), where N 
is the number of DOFs. From the basic BIE formulations, it is clear that if all the 
displacements discontinuities for the cracks are known, the multiple crack 
problems such as computing the stress intensity factor using crack opening 
displacements near the crack tip obtained from the fast multipole BEM or stress 
distributions can be solved. 
     In the following sections, the BIE formulations for crack analysis are briefly 
reviewed first. Then, the main steps of the fast multipole BEM are briefly 
summarized. The comparison of crack opening displacements from the fast 
multipole BEM and ANSYS will be described. Finally, numerical examples of 
models with large numbers of cracks in finite/infinite plates are simulated to 
show the accuracy and efficiency of the proposed approach. 
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2 Boundary integral equation for multiple crack problems 

Consider a 2-D elastic solid Ω with multiple NC ideal cracks, the displacements 
at the source point y can be expressed by the conventional boundary integral 
equation (CBIE) on the outer surface Am in terms of the crack opening 
displacements (CODs): 

 iu y       ,j ijx U x y d x


      ,j iju x T x y d x


 
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where Г is the outer boundary of the 2-D solid, and  γ=1 if yΩ and γ=0.5 if 
yГ when Г is smooth.  ,ijU x y ,  ,ijT x y  respectively represent the Kelvin 

displacement and traction fundamental solutions. Δui is the components of 
relative displacement discontinuities between two surfaces of the crack defined 
by: 

 
     i i ix A x A

u x u x u x  
    (2) 

where A+ and A- represent the upper and the lower surfaces of the crack, 
respectively. Therefore, the displacement  iu y  can be determined by the 

traction  j x , the displacement  ju x  and the COD on the crack surfaces. It is 

clear that if all the CODs are known, the multiple crack problems can be solved 
in discrete form as the conventional BEM. However, to solve this given multiple 
crack problems, the solutions of the unknowns are still impossible to obtain by 
CBIE (1). An additional BIE should be constructed on the opposite crack 
surface, that is, the traction boundary integral equation (HBIE): 

 i y         ,j k ijkn y x U x y d x

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
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where nj denotes the component of the outward unit normal at the source point y. 
The kernel functions  ,ijkU x y and  ,ijkT x y contains the derivatives of 

 ,ijU x y  and  ,ijT x y  together with elastic constants. 

     It is worthwhile to note that, the kernel functions will exhibit a singularity as 
the source and field points are coincided. In the present paper, a CHBIE 
formulation using a linear combination of the CBIE and HBIE can be written as 
[4]: 

 CBIE +  HBIE = 0  (4) 

where   is the coupling constant.  
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     Once the entire unknown CODs on the crack surfaces are obtained by 
applying the fast multipole BEM, the SIFs at the two crack tips can easily be 
obtained by using one point formula as: 

 
   2 2

,  
( 1) ( 1)I n II s

G G
K u r K u r

r r

 
 

 
 

    (5) 

where G stands for the shear modulus and r is the distance from the observed 
point to the crack tip.  nu r  and  su r  are the opening and sliding 

displacements at the observed point. The parameter   is defined as: 

 
3 4      for p lane  stra in  p rob lem s  

3
     for p lane  stress p roblem s 

1


 




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  (6) 

where v stands for the Poisson’s ratio. 

3 Formulation of the Fast multipole BEM 

The fast multipole BEM has been investigated by many authors for more than 
two decades. Applications of fast multipole BEM can be found in [4] for solving 
2-D and 3-D potential, elastostatic, Stokes flow and acoustic wave problems. A 
comprehensive review of the fast multipole BEM was given by Nishimura in [5]. 
For multiple crack problems, Wang and Yao [6, 7] have applied a fast multipole 
BEM using a new form of complex Taylor series expansions and expressive 
results were obtained using higher-order elements for 2-D problems. 
Propagations of multiple cracks were also studied by Wang and Yao [6, 7] based 
on the SIFs approach.  
     In this section, the complex notation of the kernel functions, expansions and 
corresponding translations in the FMM are summarily derived for the multiple 
crack problems. However, since the main multipole steps of  ,ijU x y  and 

 ,ijT x y  kernel integral are similar. We do not expand the relatively 

complicated  ,ijT x y ,  ,ijkU x y  and  ,ijkT x y  directly but expand the kernel 

function  ,ijU x y  only. The representations of kernel functions in HBIE (3) can 

also be found in [4]. 

3.1 Complex representations of the kernels 

Define the complex number 0z  and z  as: 0 1 2z y iy   and 1 2z x ix  , where 

1x
 
and 2x

 
are the ordinates of x , 1y  

and 2y  are the ordinates of y as shown in 

Fig. 1. By using the complex notation [4] the expansion of U kernel function can 
be written in the following complex form: 

      0 0 0

1

2 t uu z D z D z    (7) 
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where 
1 2u u iu   is the complex representation of  the displacement, and we 

have: 
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where the over bar indicates complex conjugate and G is the Green’s function (in 
complex form) for 2-D potential problems which is given by: 
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1
, log

2
G z z z z


     (10)  

where     0/ z    . Eq. (8) represents the complex notation of U kernel and 

Eq. (9) represents the complex notation of T kernel in CBIE (1), respectively.  
 

 

Figure 1: Complex notation for fast multipole expansions. 

 

     Let cz  
be a multipole expansion point close to z  ( 0c cz z z z  ) and 

apply Taylor series expansion, the multipole expansion of  0,G z z  and its 

derivatives are: 
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where the two auxiliary functions are defined as: 

Z 
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3.2 Multipole expansion and moment 

In the multipole expansion, the boundary integral of kernel functions is expanded 
into a series of products of functions. The multipole expansion for Eq. (8) is 
given by: 
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where the two moments are defined by: 
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where Sc  is a subset of S which is far away from the source point 0z . 

3.3 Moment-to-moment translation 

If the multipole expansion point shifts to 'c
z

 
from cz , then the moment to 

moment translation (M2M) can be obtained, as follows: 
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Similarly, we have: 
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3.4 Local expansion and moment-to-local translation 

If the source point 0z  is moved to Lz , that is 0 L c Lz z z z  . By using a 

Taylor series expansion, the following local expansion can be obtained: 
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
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where the two coefficients are given by: 
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3.5 Local-to-local translation 

If the local expansion center in Eq. (18) is moved to 'L
z  from Lz , then the local 

to local translations (L2L) can be obtained, as follows: 
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4 Two main steps of the fast multipole model 

In this section, we repeat to simply discuss the two important procedures of fast 
multipole BEM, i.e., the construction of quad-tree and the integration of kernel 
functions. The fast multipole BEM used the same discretization as the 
conventional BEM. The boundaries of the domain and the internal domain are 
discretized using constant elements, respectively. Consider a minimum red 
square that covers the internal domain which is defined as level 0. 
Correspondingly, the internal domain is defined as cell c1. Then start to divide 
the red square into four equal yellow cells of level 1. Continue to divide the cell 
in this way until each small cell contains one node. If a cell does not contain any 
node, there is no need to do the above dividing process. The structure of 
discretization is illustrated in details as shown in Fig. 2. 
     After the upward pass and downward pass are finished, the integration of 
kernel functions will be evaluation as shown in Fig. 3. 
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Figure 2: Quad-tree structure of the boundary element mesh. 

 

 
Figure 3: Integrals of the kernel functions. 

5 Numerical examples 

In the numerical examples, the outer boundaries and crack surfaces are 
discretized using constant elements. The number of terms in multipole expansion 

424  Boundary Elements and Other Mesh Reduction Methods XXXVI

 
 www.witpress.com, ISSN 1743-355X (on-line) 
WIT Transactions on Modelling and Simulation, Vol 56, © 2013 WIT Press



and local expansion are set at 20. The tolerance for convergence using GMRES 
in the present examples is chosen as 10-6. For the numerical examples, only KI is 
computed. The computation of KII is easily obtained as well. 

5.1 Comparison of the COD results between the BEM and ANSYS 

The first example is constructed for the purpose of illustrating the computational 
procedure presented. Without loss of generality, consider the computational 
model contains a single center crack (NC=1) in a 2-D square plate as shown in 
Fig. 4. For the outer boundary length 2W=20mm, the crack length 2a=2mm. The 
material properties are E=1 Mpa and Poisson’s ratio v=0.3, respectively. 
The stresses at upper and lower boundary are  =1 Mpa.  
     This example was analyzed using the present fast multipole BEM and 
ANSYS software. In the ANSYS analysis, the crack was divided into 90 
constant elements while 50 constant elements for each outer boundary. Fig. 5 
compares the COD results on the crack surface predicted by the two numerical 
 

 

Figure 4: Center crack in a square plate. 
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Figure 5: COD comparison from the fast multipole BEM and ANSYS. 

Boundary Elements and Other Mesh Reduction Methods XXXVI  425

 
 www.witpress.com, ISSN 1743-355X (on-line) 
WIT Transactions on Modelling and Simulation, Vol 56, © 2013 WIT Press



analyses. The fast multipole BEM results agree well with ANSYS solutions. The 
maximum error of the fast multipole BEM results is less than 2.0%.  

5.2 A plate with two symmetrically inclined cracks 

The second example is a finite plate in tension with two symmetrically inclined 
cracks of equal size as shown in Fig. 6. In the present model, the outer 
boundaries are discretized by using 400 constant elements, while each crack 
surface is discretized by using 360 constant elements.  
     The results of the normalized mode-I stress intensity factors as a function of 
the inclined angle θ at the crack tip A and B are present as shown in Fig. 7, 
respectively. It can be known that the computed results of the proposed approach 
are quite agreed with Chen and Chong [8]. The accuracy has been greatly 
improved compared with the author’s previous work [9] as well. 
 

 

Figure 6: A plate in tension with two symmetrically inclined cracks. 
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Figure 7: Normalized mode-I SIFs as a function of the tilting angle θ. 
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5.2 An infinite plate with two collinear cracks 

The third example is an infinite plate in tension which contains a pair of collinear 
cracks with equal length. The computed results of the normalized mode-I stress 
intensity factors for this example are presents as shown in Fig. 8. It can be seen 
that the numerical results from the proposed approach are in good agreement 
with the analytical solutions of Ref. [10]. 
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Figure 8: Normalized mode-I SIFs as a function of a/b for two collinear 

cracks. 

5.3 One row of periodical collinear cracks 

The last example presents a row of periodical collinear cracks in an infinite plate 
with the same size, orientation and spacing under a far-field tension 
perpendicular to the crack faces. In the computation, up to 2001 cracks are taken 
into consideration instead of using an infinite number of cracks. The purpose of 
this example is to compute the normalized mode-I SIFs. On the other hand, yet is 
also the most important point is to find an appropriate number of cracks to 
represent the infinite cases. The normalized mode-I stress intensity factors are 
calculated by the present approach and Ref. [10], compared as shown in Fig. 9.  
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Figure 9: Normalized mode-I SIFs for periodical collinear equal cracks. 
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It shows a good agreement between the numerical and the analytical solutions 
when N=10, 50, 100, 200, 400. It also can be seen that the numerical results are 
gradually closed to the analytical solutions when the number of cracks 
increasing. The absolute errors of SIFs prove this argument as shown in Fig. 10 
with different N, respectively. In general, the increase of the number of cracks 
can improve the accuracy of the present results. Correspondingly, both CPU time 
and the memory requirement will tend to long and large, respectively. At this 
point, a finite number of cracks can stand for this class of multiple crack 
problems.   
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Figure 10: The absolute errors of SIFs as a function of a/b using different 

number of N. 

6 Numerical examples 

A fast multipole BEM was applied to 2-D multiple crack analysis. Constant 
elements were used on both the outer boundaries and crack surfaces. There is no 
use of any special crack-tip elements in crack tip discretization in the fast 
multipole BEM as well as ANSYS analysis. The effectiveness and the accuracy 
of the proposed approach were verified by computing the normalized mode-I 
stress intensity factors in some examples. The CPU times take within minutes, 
and the required memory is less compared with conventional BEM. Numerical 
examples show that the approach is accurate and efficient. 
     Further work will focus on the propagation of multiple cracks. The 2-D work 
with the fast multipole BEM needs to be extended to 3-D cases. Other fast 
solution methods for the BEM, such as the adaptive cross approximation (ACA) 
method, can also be applied to study crack related problems. 
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