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Abstract 

This paper deals with the analytical integration over the linearly interpolated 
triangular boundary element involved in an indirect boundary element method 
(IBEM) for solving three dimensional potential problems. The analytical 
solutions of all the IBEM integrals are derived using the Matlab Symbolic Math 
Toolbox, with most of the deriving works carried out by computer, and 
accompanied by a few crucial manual rectifications and integrating techniques. 
Compared with the presently published kindred analytical solutions, the 
computer-produced and human-rectified ones take much less tedious manual 
work and have their own advantages in implementation, such as convenience for 
programming, and no need to trace the relevant literature for detailed 
expressions, etc. A calculation test is also carried out to justify the analytical 
solutions. 
Keywords: indirect boundary element method, triangular element, analytical 
integration, Matlab Symbolic Math Toolbox. 

1 Introduction 

The boundary element method (BEM) plays an important role in the solution of 
the potential problems which are governed by the Laplace equation or Poisson 
equation owing to its much lower requirement for computer memory and 
obvious superiority in solving infinite-boundary problems. Depending on the 
boundary integral equations (BIE) applied, BEM can be divided into direct 
boundary element method (DBEM) and indirect boundary element method 
(IBEM). The former uses the second Green formula as BIE, while the latter uses 

Boundary Elements and Other Mesh Reduction Methods XXXVI  365

 
 www.witpress.com, ISSN 1743-355X (on-line) 
WIT Transactions on Modelling and Simulation, Vol 56, © 2013 WIT Press

doi:10.2495/BEM360301



the convolution of a density function and the Laplace equation’s fundamental 
solution. A key step of BEM is to evaluate the piecewise boundary element 
integrals appearing in the integral equations (refer to [1]). When using linearly 
interpolated triangular elements, the integrals appearing in the DBEM make up 
the subset of those appearing in the IBEM, so in this paper, dealing with the 
IBEM integrals is enough to cover all the relevant BEM integrals.  
     In two-dimensional problems, exactly evaluating the boundary element 
integrals is not a hard task, since the closed-form analytical solutions of the 
integrals on a linear boundary element can be easily derived [2–5]. In three-
dimensional problems, however, analytical solutions of the integrals cannot be 
easily obtained and is usually replaced by numerical integration, such as 
Gaussian quadrature [6–8]. But unlike the analytical solutions mentioned above, 
the numerical methods usually have a trade-off between the accuracy and the 
efficiency of the calculation, i.e., to get the higher accuracy, the longer 
computational time has to be consumed, especially when the singular point is on 
the boundary or near to the boundary. To obtain the closed-form analytical 
integrations over the triangular elements for three-dimensional potential 
problems, a lot of research has been carried out, and some important progresses 
have been made. For example [6, 9, 10] provide several sets of analytical 
solutions of the integrals for three-dimensional linearly interpolated triangular 
element, as well as instructive methods for deducing the analytical solutions. 
Nevertheless, their solutions are intended for DBEM, thus having no analytical 
solutions for the integrals uniquely appearing in IDBEM, and they can only be 
applied to triangular elements with linearly interpolated potential and constant 
flux, other than linearly interpolated potential and flux. Furthermore, the 
solutions involve lots of spatial geometric factors of both the element itself and 
its position relative to the fixed point, making computer programming more 
difficult and less robust. Salvadori and Temponi [11] and Salvadori [12] provide 
a set of analytical solutions for both CPV integrals and HFP integrals; however, 
the solutions appear to be very complex and are distributed in several different 
articles, which makes the practical application difficult. 
     In this paper, a completely new set of analytical solutions of the integrals on 
linearly interpolated triangular element is derived for three-dimensional IBEM. 
Compared with those in [6, 9–12] the solutions are in closed form alike, but have 
the following characteristics: First, being derived with the software Matlab 
Symbolic Math Toolbox, most of the analytical expressions are automatically 
produced and processed with a computer. Second, as the toolbox introduces the 
square root of -1 when deriving the analytical solutions for some of the integrals, 
the evaluation of their analytical expressions involves complex calculation, 
although the final result of the evaluation is a real number, and the last, a few 
manual rectifications and integration techniques are necessary. 
     The paper is organized as follows: general formulae are presented in 
Section 2; analytical integrations for electric displacement integrals are derived 
in Section 3; analytical integrations for potential integrals are deduced in 
Section 4; and Section 5 presents a calculation example to justify the proposed 
analytical solutions; the conclusion is presented in Section 6. 
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2 General formulae  

Potential problems include electrostatic, gravitational, and steady-state heat 
conducting problems, etc. Without loss of generality, we take the electrostatic 
problem as example in this paper. In a typical three-dimensional electrostatic 
problem, the Laplace equation can be written as 

 2 ( , , ) 0u x y z  ,  (1) 

which governs the potential u in a three-dimensional domain   enclosed by a 
boundary surface  . Suppose that   is enclosed by a virtual boundary surface 
 , and there is an interval between the two surfaces.   is divided into a certain 
number of triangular elements, with neighboring elements having two common 
vertexes, the standard IBEM procedure leads to the following equation:  
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where Ne is the total number of the elements on  , n denotes the integration 
area of the nth element, uj denotes the potential value at collocation point Pj, jD


 

denotes the electric displacement vector at Pj, q  denotes the linearly 

interpolated density of the source charge on the element, and r


 is the spatial 
vector from the source point on the element to the collocation point Pj. 
     For a single triangular element, the three-dimensional Cartesian element 
coordinate system is established as shown in Figure 1. The triangular element 

P1P2P3 is in the xOy plane, with P1 coinciding with the origin O. The 
coordinate system is established so that the three components x1, y1 and y3 are 
0’s, thereby decreases the complexity of the final analytical solutions. Note the 
conditions y2 > 0, x2 > 0, x3 > 0 and x2 ≠ x3 must be satisfied in the coordinate 
system.  
 

 

Figure 1: Element coordinate system. 
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     In the triangular element shown in Figure 1, the source charge density q are 

linearly interpolated as below: 
 

1 1 2 2 3 3( , )q x y N q N q N q   ,  (3) 

where  
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are the linear shape functions. Substitute (3) into (2), and after algebraic 
manipulations, we have 
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where 2 2 2( ) ( )j j jr x x y y z     , denoting the distance between (x, y) on 

the element and Pj (xj, yj, zj) (see Figure 1), Djx, Djy, and Djz are the three 
components of the electric displacement movement vector. For an element, the 
expressions of the coefficients aq, bq, and cq are as follows: 
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     To proceed with the IBEM, the next step is to calculate the following 
integrals which are extracted from (4): 
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where A∈｛1,x,y｝，B∈｛xj -x, yj -y , zj ｝，k =1 to 3, and l = 1 to 9. So 
(5) and (6) represent twelve integrals altogether. The three integrals represented 
by (5) are named potential integrals and the three integrals represented by (6) are 
named electric displacement integrals in this paper, since they are used to 
calculate the potential and the electric displacement at Pj respectively.  

3 Analytical integrations for the electric displacement integrals 

Using the Symbolic Math Toolbox of Matlab, the analytical solutions for the 
integrals in (6) can be obtained in the form of symbolic strings. Here we take 
the integral  
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as a representative example to demonstrate the detailed integration method. 
     First, run the following Matlab codes in the Matlab command window, where 
the italic text following the symbol ‘%’ is the comment for the code in the next 
line. 

%Prepare the string representing the integrand. 
s='y/((yj-y)^2+(xj-x)^2+zj^2)^1.5'; 
%Integrate with respect to ‘x’ 
r1=int(s, 'x', 'x2*y/y2','x3+(x2-x3)*y/y2'); 
%Integrate with respect to ‘y’ 
r2=int(r1,'y','0','y2'); 
%Substitute the imaginary unit i for the square root of -1.  
r2=subs(r2,'(-1.*zj^2)^(1/2)','(i*zj)'); 

after the codes are executed, the computer-produced and closed-form analytical 
solution can be found in the string-type variable r2. Using a few string 
processing functions in the Matlab symbolic toolbox, it can be simplified to a 
much shorter string. However, if we evaluate the solution now, we will find that 
it may produce distorted result. Figure 2 is the continuously evaluated result of 
r2 illustrated using the Matlab plot function, with xj = 0 to 3, yj = 0.4, zj = 0.21, 
x2 = 2.5, y2 = 0.866, x3 = 4. From Figure 2(a) which illustrates the directly 
evaluated r2, it can be seen that the plotted curve is not continuous, and there are 
two step-changes near the points xj = 0.75 and xj = 1.5 respectively, which distort 
the evaluation.  
 

  
                          (a)                                                           (b) 

Figure 2: The evaluated result of the analytical solution before and after 
rectification. 

     After a lot of calculation trials, we find that the distortion is caused by the 
atanh() function in the r2, for the reason that every time a step-change happens 
during the process of the continuous evaluation, a sign shift between ‘+’ and ‘-’ 
occurs on the imaginary part of the atanh() function’s output value. Therefore, 
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one of the approach to avoid the distortion is to keep the imaginary part positive 
using the following procedure: 

atanh(b)→a;  if imag(a) < 0 then (a +  i) →a; 
where the variables a and b are of complex type, representing the output and 
input values of the atanh() function, and the function imag() takes the imaginary 
part of a. After the rectification, the final expression of the analytical solution is 
given below: 

       3 2 2
23 24 22 20 21 19

8 7

real ij j

x x x
H y z p p p p p p

p p
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,  (7) 

where the function real() takes the real part of the input complex value, and the 
analytical expressions of pn in (7) and other parts of the paper are listed in 
Appendix A.  
     The analytical solutions for the other 8 electric displacement integrals have 
also been derived using the Matlab Symbolic Math Toolbox, and their deriving 
method and rectification method are generally the same as the above, for the sake 
of concision, they are not listed in this paper.  

4 Analytical integrations for the potential integrals  

Unlike the integrals in (6), the analytical solutions of those in (5) cannot be 
obtained by calling the int() function twice. To get their analytical solution using 
Matlab, some integration techniques must be used manually. 

4.1 Inner integrations for 1G , 2G  and 3G  

For the three integrals in (5), first perform the inner integrations with respect to x 
using the Matlab’s int() function, and we have: 
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     From (8) to (10), it can be seen that G1, G2 and G3 are linear combinations of 
the following three types of integrals: 

  2 2
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  2 2
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where the a, b, c, d, e and c’, d’, e’ represent the constant real coefficients shown  
in (8) and (9), and these coefficients depend on the coordinates of the element 
vertexes and the point Pj (see Figure 1). So, it is essential to find the analytical 
solutions of the three types of integrals.  

4.2 Analytical solutions of the integrals represented by (11) 

One of the integrals represented by (11) is  
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substitute it into (14), and perform integration by part, then we have: 
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  (a)      (b) 

 
      (c) 

Figure 3: Three possible positions of [0, y2] relative to the joint of Y (t). (The 
grayed region illustrates the interval [0, y2].) 
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where the part in the square bracket is denoted with Y (t), i.e., 

 ( )
( ) ( ) log( )

y t
Y t y t t dt

t
 ＝ .  (17) 

     Solve the equation of (15) for y, and the following two expressions are 
obtained: 
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     Substitute them into (17) separately and solve the indefinite integrals, then we 
have two analytical expressions for Y (t), which are shown below:  
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     Since t is a function of y, Y (t) is also a function of y, and it is expressed with 
YI (t) and YII (t) conditionally and sectionally, i.e., for an arbitrary y, 
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     The graph of Y (t) vs. y can be plotted in accordance with (21), and the plotted 
curve is generally continuous and smooth, except for a step change at the joint of 
YI (t) and YII (t).Thus, to evaluate the   2( )

(0)
( )

t y

t
Y t  in (16), three possible positions of 

the interval [0, y2] relative to the joint point ys have to be considered (see Figure 
3 where all curves are plotted with y2 = 2): 
     If the interval [0, y2] is covered by YI (t) as shown in Figure 3(a),  
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if [0, y2] is covered by YII (t) as shown in Figure 3(b),  
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in the case that the joint point ys is within [0, y2], as shown in Figure 3(c), the 
step change has to be eliminated, and we have 
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where S = YI [t(ys)] – YII [t(ys)], denoting the step change at ys. Now the problem 
is how to evaluate the ys which denotes the position of the joint point. It can  
be proved that the ys has the following three properties: 
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     From the propertyⅠ, we know the ys must satisfy the following equality: 
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solve (25) for ys, and we have the following two expressions: 
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     Since there is only one joint point, it is necessary to distinguish the 
appropriate expression from the other. By observing (25), we find the 
appropriate ys must satisfy the inequality below, while the other must not, 
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 and (27) is used as the criterion for selecting the appropriate expression for ys. 
Besides, according to the properties Ⅱ and Ⅲ, the evaluation of the step 

change S in (24) can be simplified as below: 
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     Till now, the analytical solution of (14) has been found, and the flow diagram 
of the procedure is shown in Figure 4. 
 

 

Figure 4: Flow diagram for analytically evaluating the integrals shown in 
(11) and (12). (The branch in the dashed frame was never accessed 
in calculation.). 

     The other integral of this type is  
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and its analytical solution can also be obtained through the above process. The 
integrals represented by (12) can be analytically integrated using the same 
approach, and those represented by (13) can be analytically integrated by merely 
running the Matlab function int(). For the concision of the paper, their detailed 
integrations are omitted. 
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5 Calculation test 

As all the analytical solutions for the integrals in (5) and (6) are obtained with 
the aid of the computer, and the rectification method are gotten through 
calculation trials, it is necessary to justify the final analytical solutions. For this 
purpose, a testing calculation is carried out on a linearly interpolated triangular 
element using both analytical integration and numerical integration, and the 
analytical solutions can be justified if the result discrepancy between the two 
methods is trivial. In this testing calculation, the four integrals appearing in (4) 
are calculated at the two points P1 (1.2, 0.4, 0.05) and P2 (0.4, 1.2, 8), and the 
parameters used in the calculation are shown below: 

2 1.5x  ; 2 0.866y  ; 3 2x  ; 1 0.2q  ; 2 0.5q  ; 3 0.2q   . 

     The numerical method employed here is the Riemann Sum, i.e., discretize the 
element in Figure 4 into micro squares of the size x× y, and calculate the 
numerical integrals of uj and Djx, Djy, Djz in (4) with the following formulae: 

  3

3

3

1
( )

4

( )
4

( )
4

( )
4

q q q
j k k

k

j kq q q
jx k k

k

j kq q q
jy k k

k

jq q q
jz k k

k

u a b x c y x y
r

x x
D a b x c y x y

r

y x
D a b x c y x y

r

z
D a b x c y x y

r

     
 

   


      

     

















k

k

k

k

＝

＝

＝

＝

. (30) 

     In this testing calculation, x and y both take the value of 10-3 such that 
there are up to 865567 micro squares in the element. The element is so finely 
discretized as to guarantee the high accuracy of the numerical method, which 
serves as a benchmark for the analytical solution. The comparison is listed in 
Table 1, where the relative error is given in the form of percentage.  

Table 1:  Comparison between the numerical results and the analytical 
results. 

 Numerical result Analytical result Relative 
error(%) 

U P1 0.04297488236604453 0.0429854239534878 0.0245 
P2 0.00142200559008392 0.00142263990124610 0.0446 

Dx P1 0.00984781774093461 0.00983102911646729 0.1708 
P2 -0.0000141673524415 -0.0000141785552194 0.0790 

Dy P1 -0.0403967509492500 -0.0404088953008056 0.0301 
P2 0.0000167519902640 0.00001675616918126 0.0249 

Dz P1 0.1024778500083124 0.10247993596632136 0.0020 
P2 0.0001745278953599 0.00017460541972824 0.0444 
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     From Table 1, it can be seen that the relative errors between the analytical 
results and the numerical results are trivial enough to justify the analytical 
solutions. 

6 Conclusion 

For IBEM applied in three dimensional problems governed by the Laplace 
equation, the closed form of analytical solutions of the integrals over a linearly 
interpolated triangular element can be deduced using the Matlab Symbolic Math 
Toolbox accompanied by a few manual rectifications and integral techniques. As 
most parts of the analytical solutions are the automatic output of the Matlab 
command window, we are spared from the tedious manual deriving work, and 
the string processing functions in the Matlab Symbolic Math Toolbox make the 
simplification of the analytical expressions more effective. Testing calculation 
has proved the validity of the all the analytical solutions derived in this paper. 

Appendix A. Expressions of the symbols pn 

Symbols bearing the mark ‘*’ represent the rectified expressions.  

      2

3 2 3 2

1 2
2

i ij j jz y x x x x y
p

y

       (A.1) 

   2

2 2

2 2
2

ij j jy z x y x
p

y

      (A.2) 

      2
2 2 2 2 2

3 2
2

i i ij j j j j jy z x y x x y z y y z
p

y

        (A.3) 
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 
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j j

p y z
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
 

 
 (A.4) 

        22
2 3 3 2 2 3 2 2

5 2
2

i i ij j j j j jy z x x x x y y z x x y y z
p

y

           (A.5) 

  
 

5

6

2

i

i

j j

j j

p y z
p

y y z


 

 
 (A.6) 

 2 2
7 2 2p y x   (A.7) 

  22
8 2 3 2p y x x    (A.8) 

  9 2 2j jp x x y y    (A.9) 

   10 3 3 2 2j jp x x x x y y        (A.10) 

 11 3 2 3 2( ) ( )j jp x x y x x y     (A.11) 

    2 2 2
12 2 2j j jp x x y y z      (A.12) 

  2 2 2
13 3 j j jp x x y z     (A.13) 
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 2 2 2
14 j j jp x y z    (A.14) 
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