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Abstract 

The aim of this paper is to present an efficient adaptive integration technique to 
perform near-field acoustics boundary element analysis, in which nearly singular 
integrals will be encountered as the source point in integral equations is close to 
the boundary of the acoustic domain. At this time the integrand varies sharply, so 
the conventional Gaussian quadrature becomes inefficient or even inaccurate. In 
this paper, an adaptive integration technique is proposed, which determines 
required Gauss orders and the number of sub-elements according to the specified 
integration accuracy and the relative position from the source point in integral 
equations to the element under integration. Two numerical examples have been 
presented to demonstrate the efficiency and accuracy of the proposed approach. 
Keywords: nearly singular integrals, boundary element method, adaptive 
integration, subdivision technique. 

1 Introduction 

Boundary element method has become a popular approach for solving acoustical 
problems by virtue of its advantages, such as semi-analytics, high accuracy and 
reducing dimension. Especially for the exterior radiation problem, the integral 
over the boundary of an unbounded fluid domain actually disappears due to the 
Sommerfeld radiation condition, and then only the structural boundary needs to 
be discretized into elements. In terms of this point, the boundary element method 
is more effective than the finite boundary method in calculation of infinite 
domain acoustical problems. Therefore, acoustics is one of the best areas to 
demonstrate the power of the boundary element method [1, 2]. In three-
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dimensional near-field acoustics boundary element analysis, integrals are 
referred to as nearly singular when the source point in integral equation is close 
to the element under consideration. In this case the integrand varies sharply, as is 
the intrinsic drawback of boundary element methods. To overcome this 
difficulty, several techniques have been developed, such as analytical and semi-
analytical methods, translation technique, and adaptive tactics, etc. 
     The analytical and semi-analytical methods [3, 4] are limited to the planar 
elements only. When curved elements are involved, these elements must be 
divided into a large number of planar triangles, thus losing efficiency and 
accuracy. The methods proposed by Telles [5] and Telles and Oliveira [6], who 
is one of the pioneers in applying nonlinear transformation techniques to 
regularize weakly singular integrals and nearly singular integrals, include a cubic 
polynomial transformation depending on an optimized parameter which, in turn, 
depends on the position of the nearly singular point. It has been shown in 
reference [7] that this approach is very successful when the optimization is 
performed accurately, however, the method is very sensitive to the optimization 
procedure. In fact, Sladek et al. [7] conclude that an optimized parameter based 
on a slightly incorrect (within 1%) nearly singular point can reduce the 
effectiveness of the transformation significantly. Based on the sinh function, 
Johnston and Elliott [8] and Johnston et al. [9] introduced a transformation for 
evaluating near singular integrals, which arise in the solution of Laplace’s 
equation in three dimensions. Distance transformation method, which belongs to 
a kind of non-linear transformation and has been proposed by Ma and Kamiya 
[10, 11], is a general strategy to deal with nearly singular integrals with various 
kernels in BEM. For this method, the numerical results are very sensitive to the 
position of the projection point of the source point because the projection point 
may locate inside or outside the element, as is the drawback of the method. Qin 
et al. [12] presented an improved distance transformation technique, which 
overcomes the conventional distance transformation technique’s drawback, i.e. 
the accuracy is sensitive to the position of the projection point. Based on the sinh 
transformation and parabolic geometry elements, Gu et al. [13] presents an 
improved approach for the numerical evaluation of nearly singular integrals. Xie 
et al. [14] proposed a further development of the distance transformation 
technique for accurate evaluation of the nearly singular integrals arising in the 
two-dimensional boundary element method. More recently, this variable 
transformation method is extended to three-dimensional boundary element 
method [15]. Apart from the above methods, adaptive tactics have been widely 
used in tackling nearly singular integrals arising in many boundary element 
analyses of engineering problems, such as potential problem [16, 17], contact 
problems [18], plate bending [19], thermoelastic problems [20], elasto-plastic 
problems [21, 22], etc. Kita and Kamiya [23] gave a comprehensive review on 
adaptive mesh refinement schemes for boundary element methods. For acoustics 
boundary analysis, Chen et al. [24] used the Burton and Miller approach to 
overcome non-uniqueness difficulties for exterior acoustic problem, 
consequently, hypersingular integrals will be encountered in this case. Then, the 
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h-adaptive mesh refinement process is used to tackle singular and hypersingular 
integrals. The analysis is only limited in two-dimensional problem.  
     To the best of the authors’ knowledge, there have not been papers dedicated 
entirely to the subject of three-dimensional near-field acoustics boundary 
element analysis. This paper discusses this issue and the outline is as follows. 
The acoustics boundary element method is reviewed in Section 2. It is pointed 
out that nearly singular integrals will be encountered as the source point in 
integral equation is close to the boundary of acoustic domain. In this case, the 
conventional Gaussian quadrature becomes inefficient or even inaccurate. So in 
Section 3, an efficient adaptive integration technique is presented. In Section 4, 
two numerical examples are presented to verify the efficiency and accuracy of 
the proposed approach. Finally, Section 5 draws conclusions. 

2 Acoustics boundary element method 

The governing differential equation for the acoustic pressure field in time-
harmonic linear acoustics can be expressed by the Helmholtz equation: 
 2 2 0p k p    (1) 

where p  is the sound pressure, /k c  is the wave number,   and c  are the 

angular frequency and the speed of sound, respectively. A time harmonic factor 
of exp( )i t  is suppressed here and in the remaining discussion, where 1i    

denotes the imaginary unit. 
     The Helmholtz integral equation is derived from Green’s second identity or 
the weighted residual formulation. For an interior acoustic problem, the 
boundary integral equation [2] is  

 
 
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where P  is the source point and Q  is the integration point on the boundary, 
( , )( , ) 4 ( , )ikr Q PG Q P e r Q P  is the fundamental solution in a three-dimensional 

free space of the Helmholtz equation, ( , )r P Q  denotes the distance between P  

and Q , n  is the unit outward normal of the boundary, nv  is the particle normal 

velocity, which is related to the sound pressure by Euler’s equation,   is the 

mean density of fluid, the leading coefficient 

 
0 ( ) ( , ) ( )LS Q

C P Q P n dS Q    , where ( , ) 1 4 ( , )L Q P r Q P   is the 

fundamental solution of the Laplace equation. 
     In a similar manner, the boundary integral equation for an exterior acoustic 
problem is 
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Notice that the unit outward normal of the boundary for an exterior problem is 
actually opposite to the outward normal of the boundary for an interior problem, 
and the leading coefficient 

 
( ) 1 ( , ) ( )LS Q

C P Q P n dS Q    . 

     The boundary element method, which is based on a discretization procedure, 
is developed to approximate the integral operators. By discretizing the boundary 
integral equation, a system of equations is generated, which can be written in 
matrix form as 
      nH p G v  (4) 

where  H  and  G  are matrices of influence coefficients.  p  and  nv  are 

vectors containing the nodal values of the sound pressure and the particle normal 
velocity. Once the boundary conditions of the problem are applied to the 
equation (4), the matrices can be reordered in the form: 
     A x b  (5) 

in which all unknowns have been collected into the vector  x . And the vector 

 b  is known values obtained from the product of the specified boundary 

conditions and the corresponding matrix coefficients. 
     Once the boundary unknowns are determined, interior quantities at selected 
points can be obtained, if desired. In this process, when the source point in 
integral equation is close to the element under consideration, integrals are 
referred to as nearly singular. Special treatment is required in this case, and an 
efficient adaptive integration technique is presented in this paper to deal with 
nearly singular integrals. 

3 Adaptive integration technique for nearly singular integrals 

The Gaussian quadrature formula for a surface in three dimensions can be 
expressed in the intrinsic coordinate system by the equation 
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where 1
i , 2

j  are the Gauss ordinates, 1
iw , 2

jw  are the weights, 1m , 2m  are the 

Gauss orders, and 1E , 2E  are the integration errors in the two directions. Lachat 

and Watson [25] firstly tackled this question in a rational manner by making use 
of certain analytical expressions for the bounds of the Gauss integration error. 
They pointed out that the error of the Gaussian quadrature depends on the 
number of Gauss points and the element size. An approximate formula for the 
upper bound of the relative error i ie E I  in the thi  direction has been 

proposed by Mustoe [26]: 
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where q  is the order of singularity of the integrand qr , iL  is the length of the 

element in the thi direction, and R  is the minimum distance from the source 
point to the element. 
     To avoid using excessively high Gauss orders im , elements may be further 

divided into subelements to reduce the iL R  ration, as is shown in Fig. 1.  

 

Figure 1: Element subdivision technique. 

     It should be pointed out that nearly singular integrals will also be encountered 
as source points are close to the element under consideration for the boundary 
integral equation. On the contrary to discrete integral equation, it is not necessary 
to employ extensive work in this case. Sufficient accurate results can be obtained 
by using normal Gauss orders (in general, four or six Gauss orders are sufficient) 
due to the ratio iL R  will not be too large, except the situation where the sizes 

of the adjacent elements are significantly different. 
     For convenience, Eq. (7) may be approximated by the expression [27] 

 

3

482 2
0.1ln 123 5 3

ii
i

Lem q
R

 
                  
 

 (8) 

Rearranging this equation gives the maximum length iL  of a subelement: 
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 (9) 

Using this approximation, the required Gauss order is obtained explicitly, rather 
than through iteration. Alternatively, given a maximal Gauss orders, the 
corresponding subelement dimensions can be obtained explicitly. Now, in order 
to implement an adaptive integration scheme based on these criteria, it is 
necessary to devise efficient methods for determining the geometric parameters
R  and iL  for each source point in integral equation and for each element or 

subelement. Details of derivation and implementation can be found in the 
literature [21, 28]. 
     The adaptive integration technique involves increasing the number of 
integration points as the minimum distance between source points in integral 
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equation and elements decreases and subdividing the integration interval into 
sub-intervals if the number of required integration points is greater than a 
specified maximum [27]. Here, letting max 8m   be the specified maximum 

allowable order of Gauss integration, we devise the following strategy to 
implement it: 
(a) Calculate element length iL  and minimum distance R  from the source point 

in integral equation to elements. 
(b) Calculate the Gauss order im  with specified precision. 

(c) If maxim m  integrate using Gaussian quadrature. 

(d) If maxim m , calculate subelement lengths, using maxim m . 

(e) Divide element into equal subelements. 
(f) Calculate the Jacobian of the transformation from the subelement original 
intrinsic coordinate system to a new Gaussian quadrature space. 
(g) Integrate over all subelements using identical Gauss order 8im  . 

(h) Repeat (f) for all subelements. 

4 Numerical examples 

In order to demonstrate the accuracy and efficiency of the method, two 
examples, including the interior acoustic problem and the exterior acoustic 
problem, are presented as follows.  

4.1 One-dimensional plane wave in a box 

The first example is a 1m×1m×1m box with a unit amplitude normal velocity 
specified on one side 0mx   and an anechoic termination, which means no 
reflection of sound, specified on the opposite side 1mx  . The boundary 
condition for an anechoic termination is simply the characteristic impedance. 
The other four sides of the box are assumed to be rigid, i.e. zero normal velocity. 
The solution of this example is the one-dimensional plane wave 
 ikxp ce   (10) 

We set the frequency at 5.45901Hzf  , 31.21kg/m  , 343m/sc  , and use a 

total of 26 nodes and 16 four-node quadrilateral elements to model the box. Six 
interior points in the box is selected to calculate its’ quantities. The analytical 
solution, numerical results of conventional boundary element method and the 
boundary element method with adaptive integration technique are shown in 
Table 1. 
     As shown in Table 1, with higher Gauss orders, more accurate results can be 
obtained in conventional boundary element method. Meanwhile, the results in 
conventional boundary element method are poor in accuracy when the source 
point in integral equation is close to the surface of acoustic domain. Especially, 
when the distance from the source point in integral equation to the element tends 
to zero, the obtained results are wrong. For greater clarity, the real part of sound 
pressure of different source points is plotted in Fig. 2. We observe that inaccurate 
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or incorrect results would be obtained with conventional boundary element 
method as the distance between source points in integral equation and the 
boundary of acoustic domain is less than 0.05m with the current mesh size. On 
the other hand, we can see that the solution of boundary element methods with 
adaptive integration technique agrees very well with the analytical solution. 

Table 1:  Sound pressure (Pa) at the interior points in the box. 

Source point 

coordinate 

Analytical 

solution 

Conventional BEM Adaptive 

integration Gauss orders=4 Gauss orders=8 

(0.500,0.5,0.5) (414.511,-20.743) (414.533,-19.584) (414.526,-19.584) 
(414.533,-

19.584) 

(0.800,0.5,0.5) (413.703,-33.167) (413.446,-31.978) (413.743,-32.009) 
(413.741,-

32.009) 

(0.950,0.5,0.5) (413.159,-39.369) (433.323,-40.231) (412.583,-38.150) 
(413.217,-

38.211) 

(0.975,0.5,0.5) (413.059,-40.401) (398.506,-37.906) (419.657,-39.884) 
(413.118,-

39.244) 

(0.995,0.5,0.5) (412.977,-41.227) (256.707,-24.760) (362.986,-35.211) 
(413.039,-

40.070) 

(0.999,0.5,0.5) (412.961,-41.393) (216.686,-20.953) (242.609,-23.596) 
(413.064,-

40.239) 

 

 

Figure 2: Real part of sound pressure of one-dimensional plate wave. 

4.2 Pulsating sphere 

The analytical solution of the acoustic pressure of a pulsating sphere with a 
radius of   is given by 

 
2

( )

1
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p e
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   
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 (11) 

Boundary Elements and Other Mesh Reduction Methods XXXVI  359

 
 www.witpress.com, ISSN 1743-355X (on-line) 
WIT Transactions on Modelling and Simulation, Vol 56, © 2013 WIT Press



where the normal velocity amplitude is assumed to be unit. To run the test case, 
we set 1ma   and set the frequency at 54.5901Hzf  . The surface of the 

sphere is modeled using 396 nodes and 394 four-node quadrilateral elements. 
Since this is an exterior problem, we add one CHIEF point at the center of the 
sphere. The analytical solution, numerical results of conventional boundary 
element method and the boundary element method with adaptive integration 
technique are shown in Table 2.  

Table 2:  Sound pressure (Pa) at the outer points of a pulsating sphere. 

Source 
point 

coordinate 
Analytical solution 

Conventional BEM 
Adaptive integration 

Gauss orders=4 Gauss orders=8 

(3.000,0.0,

0.0) 
(34.112,-91.683) (33.497,-91.300) (33.497,-91.300) (33.729,-91.317) 

(1.500,0.0,

0.0) 
(187.733,55.083) (186.802,53.777) (186.802,53.777) (187.005,54.474) 

(1.100,0.0,

0.0) 
(206.541,168.874) (205.973,166.787) (205.988,166.806) (205.908,167.753) 

(1.050,0.0,

0.0) 
(207.264,187.509) (206.709,185.483) (206.783,185.568) (206.761,186.509) 

(1.005,0.0,

0.0) 
(207.512,205.448) (190.320,187.788) (214.128,211.357) (207.053,204.501) 

(1.001,0.0,

0.0) 
(207.515,207.100) (135.778,134.911) (175.057,174.278) (207.062,206.190) 

 
     In a similar manner, we can see from Table 2 and Fig. 3 that the boundary 
element method without adaptive integration fails to obtain satisfactory result 
when the source point in integral equation is close to the surface of acoustic 
domain, because nearly singular integrals are not taken into account.  
 

 

Figure 3: Real part of sound pressure of sphere wave. 
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5 Conclusion 

In this paper, an adaptive integration technique has been presented to tackle 
nearly singular integrals which arise in three-dimensional near-field acoustics 
boundary element analysis. This method involves increasing Gauss orders as the 
source point in integral equation approaches the boundary of acoustic domain 
and subdividing the element into subelements to avoid using excessively high 
Gauss order according to Davies and Bu’s criterion. Thus, this method takes the 
optimal computational cost to yield specified integration accuracy. The given 
numerical examples show that the proposed approach is accurate and robust. 
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