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Abstract 

In this paper, an efficient method for numerical evaluation of all kinds of 
singular curved boundary integrals from 2D/3D BEM analysis is proposed based 
on an operation technique on a projection line/plane. Firstly, geometry variables 
on a curved line or surface element are expressed by parameters on the 
projection line/plane, and then all singularities are analytically removed by 
expressing the non-singular part of the integration kernel as a power series in a 
local distance defined on the projection line/plane. Also, a set of important 
relationships computing derivatives of intrinsic coordinates with respect to local 
orthogonal coordinates is derived. A few examples are provided to demonstrate 
the correctness and the stability of the proposed method. 
Keywords: boundary element method, super singular integral, projection plane, 
power series expansion, radial integration method (RIM). 

1 Introduction 

The efficient analysis of engineering problems using the boundary element 
method (BEM) requires accurate evaluation of various kinds of boundary 
integrals. When the source point is located on the element under consideration, 
some boundary integrals become singular. The treatment of these singular 
boundary integrals has been being an important topic for BEM researchers, and 
some methods have been proposed [1–8] for eliminating involved singularities. 
So far, the efficient methods treating singular curved line or surface integrals are 
the ones based on the operation over the intrinsic coordinate system [1–3].  
     Guiggiani et al. [2] proposed a general algorithm for evaluating hyper-
singular curved surface integrals based on expansion of geometry quantities as 
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Laurent series in the parameter plane of intrinsic coordinates. This algorithm has 
been developed to evaluate super-singular boundary integrals by Karami and 
Derakhshan [3] and high-order singularities by Frangi and Guiggiani [4]. In a 
different way, Bonnet and Guiggiani [5] presented an algorithm for evaluating 
hyper-singular double integrals arising in 2D Galerkin BEM. Recently, Gao [1] 
proposed a method for handling super-singular boundary integrals with the order 
of singularities up to 6 by expanding the non-singular part of the integrand as 
power series in the intrinsic plane. The common point of these methods is that 
the parameter plane of intrinsic coordinates is used to set up the polar coordinate 
system [2–6] or to using RIM [1] to eliminate high-order singularities. The 
drawback of these methods is that a small contour of an inner neighbourhood 
around the source point, which is distorted in the parameter plane, needs to be 
reversed to express in terms of a same global size quantity. This limits the scale 
of eliminating singularity orders. 
     In this paper, a novel direct method for evaluating arbitrary high-order 
singular boundary integrals is proposed by projecting geometry quantities over a 
curved line for two-dimensional (2D) problems or a curved surface for three-
dimensional (3D) problems onto a tangential line or a fat plane to the center of 
the boundary element. Then, various singularities are removed analytically on 
the projection line/plane. In doing so, a set of important formulae for computing 
derivatives of intrinsic coordinates with respect to local orthogonal coordinates 
are derived, which provides a basis for expanding all geometry quantities as 
Taylor series in terms of the distance defined on the projection line/plane. Some 
2D and 3D numerical examples are given, which show that very stable results 
can be achieved using the proposed method in the paper. 

2 Singular boundary integrals and boundary element 
discretization 

In analysis of engineering problems using BEM, the boundary of the problem is 
usually discretized into a series of boundary elements [1, 9]. Singular integrals 
over an element can be classified into the following form [1]: 
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in which, px  and x represent the source and field points, respectively; 
e  is the 

boundary element under integration, which is a curved line or a curved surface 
for 2D or 3D problems, respectively; and r is the distance between the source 
and field points and is defined as: 
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where D=2 for 2D and D=3 for 3D problems. The term ),( xx pf  in eqn. (1) is a 

regular function and  is the order of the singularity. 
     In 2D problems, the following types of singular line integrals are also 
frequently encountered: 
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     In this paper, it is assumed that the integrals shown in eqns (1) and (3) always 
exists, that is, the integration results are finite values.  
     In order to numerically evaluate the boundary integrals shown in eqns (1) and 
(3), coordinates in an element can be expressed in terms of their nodal values as 
follows: 
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where 
nodeN  is the number of element nodes;   represents the intrinsic 

coordinate and for a surface element it being understood that ),()( 21   ; 
N  is 

the shape function of the -th node [1], and 
ix  is the i-th component of 

coordinates at the -th node.  

3 Expansions of geometry quantities on the projection line 
or plane 

In general, boundary elements are some curved lines or surfaces, so direct 
evaluating integrals over them is difficult. To solve this problem, we introduce a 
projection line for 2D or a projection plane for 3D problems, which is the 
tangential line/plane of the element to the origin of the intrinsic coordinate 
system. A local orthogonal coordinate system is established on the projection 
line/plane. Assuming that the direction cosine of the local coordinate axes with 
respective to the global one is Lij, (its determination method can be found in 
references, i.e., in [9]), the coordinates transformation between the local and 
global systems can be performed using the following relationships: 
 

 )( o
jjiji xxLx   (5) 

 
jji

o
ii xLxx   (6) 

where the repeated subscripts represent summation, o
ix  is the global coordinates 

of the origin of the local coordinate system, which is determined using eqn. (4) 
by setting 0 . 

     Making use of eqn. (5), one can project the original curved element onto the 
projection line or plane to form a straight or a flat projection element, and then 
all geometry quantities can be expressed in terms of variables defined on the 
projection line/plane. 
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3.1 Expansion of geometry quantities on the projection line for 
2D problems 

In 2D problems, the boundary element is a curved line as shown as in fig. 1. 
The local orthogonal coordinate system is denoted by (

21 xx ， ) or ( y，x ) and 

the projection line is a line along the axis 1 .x  
 

 

Figure 1: Variables defined on the projection line. 

     For a line, there is only one independent variable. Other geometry quantities 
on the curved line can be expressed in terms of this independent variable (here 
we choose the coordinate 1x ). Thus, the coordinate y  (i.e., 

2x ) at the field point 

over the curved surface can also be expressed in terms of 1 .x  To do this, 

expanding y  as Taylor series about the origin of the local coordinate system as 

follows (truncated to quadratic terms): 
 2
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     Through performing a differentiation for eqn. (4), we can obtain the following 
expressions for computing the first and second derivatives of the intrinsic 
coordinate with respect to the local coordinate. 
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where 
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     In boundary integrals, usually a distance is used to formulate fundamental 
solutions. Therefore, it is convenient to define a local distance  which is from 
the source point projection point P  to the field point projection point Q  (see 

fig. 1), i.e., 
 pxx 11   (13) 

where px1  is the local coordinate of the source point p. 

     The local coordinate 1x can be expressed in terms of the local distance  

using the following relationship [10, 11]: 
  1,11  pxx  (14) 

where 
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     Thus, substituting eqn. (14) into eqn. (7), we obtain 
  ),( yqyy p   (16) 

where 
  )()(),( 21 yayqyq   (17) 
 

1,1211 ])(2)([)( pxyayayq   (18) 

     In a similar manner, we can express the intrinsic coordinate in terms of the 
local distance as: 

  ),(qp   (19) 
where ),( q  can be determined by replacing y  with   in eqn. (17). 

     Referring to fig. 1, the global distance r can be easily derived as 

  )()( 22 gyyr p   (20) 
where 

 ),(1)( 2  yqg   (21) 

     Sometime, the global coordinates 
ix are also included in the integrand. 

Therefore, it is useful to derive the following expression from eqns (14) and (6) 
for 

ix : 

  )( ii
p
ii cbxx    (22) 

where 
 ),(121,1  yqLLb iii    (23) 

 )(22 yaLc ii   (24) 
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3.2 Expansion of geometry quantities on the projection plane for 
3D problems 

In 3D problems, the boundary element is a curved surface as marked with ABCD 
in fig. 2. A local orthogonal coordinate system ( x , y , z ), or written as 

(
1x , 2x , 3x ), is established on the projection plane with its origin being at the 

point ( 01 , 02 ), in which the axes 1x  and 
2x  are located within the plane 

with the axis 
1x  being along 

1 direction and axis 
3x  is along the outward normal 

direction of the element. Making use of eqn. (5), we can project the original 
curved surface element onto the projection plane, to form a flat projection 
element (marked with DCBA  ). 
 

 

Figure 2: Boundary element projected onto projection plane. 

     In a plane, there are only two independent variables. We choose 1x  and 
2x  as 

the independent variables, and z  (i.e., 
3x ) over the curved surface can be 

expressed in terms of 1x  and 
2x . To do so, expanding z  as Taylor series about 

the origin of the local coordinate system as follows (truncated to quadratic 
terms): 
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where 
Kz  /  can be calculated by nodal local coordinates using eqn. (4), 

expressions for 
IK x /  have been  given by  Lachat  in  [12]  and  Lachat and 

Watson in [13], and expressions for 
JI

k

xx 
 2  are derived in this paper and listed in 

the Appendix.
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     Similar to 2D problems, the local distance  projected from the global 

distance r onto the projection plane and its derivatives I,  are introduced 

(fig. 3) as follows:  
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Figure 3: Quantities defined on the projection plane. 

     The local coordinates at the field point can be expressed in terms of a linear 
relationship on   [10, 11] as follows 
  I

p
II xx ,  (30) 

     From eqn. (29) and fig. 3, it can be seen that 
I,  is a quantity depending on 

the angle between   and axis 1 ,x  being independent of   itself.  

     Substituting eqn. (30) into eqn. (25) yields: 
  ),(zqzz p   (31) 

where, 
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     In a similar manner to the 2D case, intrinsic and global coordinates can be 
expressed as: 
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where 
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Boundary Elements and Other Mesh Reduction Methods XXXVI  341

 
 www.witpress.com, ISSN 1743-355X (on-line) 
WIT Transactions on Modelling and Simulation, Vol 56, © 2013 WIT Press



 )(23 zqLc ii    (37b) 

     In eqn. (35), ),( Kq  can be determined by replacing z  with 
K  in 

eqn. (32). 
     Making use of the normalized orthogonal property of the coordinate 
transformation tensor 

ijL , the expansion of r can be derived using eqn. (36) as 

follows: 
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where, 

 ),(1)( 2  zqg   (39) 
     After expanding geometry quantities in terms of the local distance, we can 
treat the singular boundary integrals shown in eqns (1) and (3). 

4 Formulae for evaluating arbitrary singular 
boundary integrals 

4.1 Formulae for evaluating singular curved line integrals 

In 2D problems, the differential relationship between the local distance and the 
real curved line can be written as： 
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where 0
in  and 

in  are the outward normals to the origin of the local coordinate 

system and the field point, respectively. 
     Substituting eqns (40) and (38) into eqn. (1) leads to 
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where 
E  is the distance from the projected point P  to one of the end of the 

projected line element, and )(F  is the regular part, that is,  
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     In order to integrate eqn. (41), the non-singular part F  is expanded as a 
power series in  , such that 
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in which, N is the order of the power series, usually taking a value between 2 and 
7 depending the size of 

E ; and )(nB  are constants which are determined by 

collocating N+1 points over the integration region (0,
E ). In the paper, N+1 

equally spaced points are used, i.e., ）（ N ,,,0 1  . The coefficient for the first 

point  0n  is )0()0( FB   and other coefficients can be solved using the 

following equation set:  
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     }{}{ YBR   (44) 
where,  R  is a square matrix with the order of N: 
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}{B  and }{Y  are vectors as follows：  
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     Solving eqn. (44) for coefficient vector }{B  and then substituting eqn. (43) 

into (41) yield: 
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where,  

  





















1                             ,lnlimln

1       ,lim
1

1

0

1

0

1














n

n
nE

E

nn
E

n
 (48) 

     For a physical problem, the integral should exist. This means that the terms 
involving  in eqn. (48) should be eliminated after considering the contributions 
of the all adjacent elements around the source point or should be cancelled out 
by free terms [1–5]. Thus, we obtain: 
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     In a similar way, substituting eqns (40) and (38) into eqn. (3), it follows that 
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     In which, the regular parts are: 
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     In above equations, F  is determined by eqn. (43), and F   is expanded as the 
power series in  as follows: 
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where coefficients )(nC  can be determined using equations similar to  

eqns (44)–(46).  
     Through a similar treatment to eqn. (47), the following equation can be 
obtained from eqn. (50). 
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where 
nE  is the same as eqn. (49), and 
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 (55) 

     Equations (47) and (54) together with eqns (49) and (55) can be used to 
evaluate arbitrary high order of singular line integrals. Since 

E  cannot be zero, 

no singularities exist in the above equations. 

4.2 Formulae for evaluating singular curved surface integrals 

In 3D problems, the relationship between the differential areas over the 
projection plane and the real surface can be written as: 
 

ii nndddA 0cos    (56) 

in which, A is the area of the projection plane, 0
in  and 

in  are the outward 

normals to the origin of the local coordinate system and the field point, and   is 

the angle between them.  
     Substituting eqns (38) and (56) into eqn. (1), the surface integral can be 
expressed in terms of an integral over the projection plane as follows: 
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xx
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nng

f
I
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p
p   

 (57) 

     Employing the Radial Integration Method (RIM) [10, 11], the above integral 
over the projection plane can be transformed into a closed line integral over the 
contour of the projection element (see fig. 3): 

 FdL
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I
LL

p


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)(x  (58) 
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in which, L
II

L nn ,/    with L
In  being the outward normal to the contour line 

L (fig. 3), and F is the radial integral on the projection plane and can be written 
as: 
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where 
L  is the distance from the source point to the integration point on the 

contour line L, and )(F  has the same form as shown in eqn. (42). 

     Through a similar derivation process to the 2D problems, eqn. (59) can be 
computed using the following expression: 
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where the coefficient )(nB  is determined using eqns (44)–(46), and 
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 (61) 

in which, 1  . 

     Since L  is the distance from the source point p to the contour line L (see 

fig. 3), 
L  is not zero when the source point p is located interior of the element. 

Otherwise, when p is located on a side of L, the value of Ln /  on the current 

element has the same size but opposite sign to that on the adjacent element, and 
therefore they cancel out each other. This means that the sides where p is located 
on need not to be considered at all. Thus, arbitrary order of singular surface 
integrals can be evaluated using eqns (58), (60) and (61) without singularities. 

5 Numerical examples 

Based on the formulae derived in this paper, a computer code, SIETPEM 
(Singular Integral Evaluation based on Tangential Plane Expansion Method), has 
been developed, and a number of line and surface integrals have been evaluated 
numerically. Some of them are analyzed below. 

5.1 A singular integral over a parabolic curve 

The first example to be exhibited is a line integral with the form   drJ )ln( . 

The integration line is a parabolic curve as shown in fig. 4 with coordinates of 
three typical points being 1(0.0, 0.0), 2(2.0, 0.0), 3(1.0, 0.5). The computational 
point (source point) is at 3. The parabolic curve is taken as one 2D quadratic 
boundary element. This integral can be accurately evaluated using the Gauss 
quadrature rule for logarithmic function. The result is 2.005257.J    Table 1 
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lists the computational results using the current method for different order of 
power series. It shows that the formulae derived in the paper is correct and can 
give very stable results. 

 
Figure 4: A parabolic curve. 

Table 1:  Computed results for various values of N (accurate result is  
J =-2.005257). 

N 3 4 5 7 9 
J -2.004977 -2.005137 -2.005245 -2.005258 -2.005257 

5.2 Singular integral over a 90º cylinder surface 

The second example is adopted from Ref. [2] to examine the perforce of the 
proposed method in handling singular integrals over a highly curved surface. The 
boundary element considered is a cylinder surface with radius 1 and the 
rotational angle is 90º (see fig. 5). The boundary integral is as follows: 
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 


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 dn
n

r
r

r
xI p

33,3
4

1
)( 

 

     Three source points a，b and c, are located at positions with intrinsic 
coordinates of (0, 0), (0.66, 0) and (0.66, 0.66), respectively. Guiggiani et al. [2] 
computed this example in for the case of β=3. Table 2 lists the results from both 
methods, which shows that the current results are in good agreement with those 
from [2]. 

 

Figure 5: 90° curved element. 
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Table 2:  Computed results for three points a, b and c (β=3). 

 Point a Point b Point c 
Ref. [2] -0.343807 -0.497119 -0.876365 
Current -0.343808 -0.497095 -0.876863 

5.3 Singular integral over a 45º spherical surface 

The third example is aimed to examine the super singular integral 
   drnnrrxI p )4/(/3)( 33,

  over a spherical surface with radius 1. The 

element is formed by rotating a vertical circular arc with the height of H=2h=0.5 
by 45º about the y-axis. Fig. 6 shows the 8-noded spherical element. 
 

 

Figure 6: A spherical element with 45° rotation angles. 

     Three source points a，b and c (see fig. 6) with intrinsic coordinates (0,0), 
(0.5, 0) and (0.5, 0.5), respectively, are computed. Tables 3 gives the 
computational results for the singularity order β=3 and Table 4 investigates the 
stability of the computational results to the order of the power series when 
treating the high-order singularity β=6. Comparison to results obtained using the 
method in [1] shows that two methods give relatively close results, but the 
current method is more stable than the method based on the treatment in the 
intrinsic coordinate plane presented in [1]. 

Table 3:  Results for β=3. 

 Point a Point b Point c 

Current -0.561422254 -0.385803354 -0.459634689 

Ref. [1] -0.560328957 -0.377519079 -0.453400168 
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Table 4:  Results for different orders of power series at point b with β=6. 

N 2 3 4 5 6 7 
Current -6. 926340 -6.926340 -6.926340 -6.926083 -6.927782 -6.91993 

Ref.[1] -6.668087 -6.668087 -6.668087 -7.435129 -10.60427 -19.0199 

6 Concluding remarks 

A new direct method for evaluating singular line and surface integrals has been 
presented in the paper. The derived formulae can handle arbitrary high order of 
singularities. The derived new set of formulae for computing derivatives of the 
intrinsic coordinates with respect to local orthogonal coordinates can provide a 
basis for expanding complicated geometry quantities as the Taylor series on the 
projection line or plane. The idea of expanding geometries as the Taylor series at 
the center of the element, rather than at the source point, can guarantee the high 
order of the computational accuracy.  
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Appendix: the second derivatives of intrinsic coordinates with 
respect to local orthogonal coordinates on a surface element 
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