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Abstract 

The translation from multipole moments to local moments (M2L) in the fast 
multipole boundary element method (FMBEM) costs too much time; we 
compare three methods of M2L optimization from the three following aspects: 
accuracy, efficiency and memory usage with an engineering numerical example, 
and then present a GPU parallel algorithm using CUDA for one of the front three 
methods which transfers child cell’s coefficients to their father cell, meanwhile, 
improve the tree structure by redefining the whole cells in different levels which 
can avoid writing data conflict in the parallel strategy. Finally, we use the three-
dimensional elastic BEM problems of chassis parts to verify the algorithm, and 
the result shows that the accelerating effect of this method is significant. 
Keywords: fast multipole method, boundary element method, 3D elasticity, GPU, 
CUDA. 

1 Introduction 

The fast multipole method (FMM) was invented in the late 1980s by Rokhlin and 
Greengard [2]. The basic idea of the FMM is to unite as a collection of particles 
by region, and then replace the effect between the two particles with the particle 
collection which should adopt the hierarchical tree data to reduce the complexity 
of N-body problems [1]. There are two types of the tree structures in the FMM: 
the full tree structure [2, 3] and the adaptive tree structure [4, 5], but nowadays 
the adaptive tree structure is widely used for its high efficiency and adaptivity. 
     The boundary element method (BEM) combined with the FMM can 
efficiently deal with large-scale engineering and scientific problems [6, 7], which 
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is called fast multipole BEM (FMBEM). According to the time-consuming 
analysis of the various parts of the FMBEM, it was found that the translation 
from multipole moments to local moments (M2L) is one of the most time-
consuming parts, if M2L calculation could be accelerated, the efficiency of the 
fast multipole algorithm would be improved in whole. 
     In order to accelerate M2L calculation, Greengard and Rokhlin [3] introduced 
the exponential moments to the M2L process in the late 1990s. They proposed a 
new type of fast multipole algorithm whose precision is controlled and 
acceleration effect is remarkable when the order of the moments is large, but this 
algorithm costs large memory and its acceleration effect is not obvious if the 
order of the moments is small. In recent years, Gumerov and Duraiswami [8] 
optimized the M2L process of the FMM, the multipole moment coefficients were 
transferred to the local moment coefficients of the target cell’s father cell when 
the cell meets the condition of a certain distance; thereby the amount of 
computing M2L is reduced. The corresponding research about this is very little 
because the optimization is relatively new. Furthermore, Bapat and Liu [9] 
proposed a similar M2L optimization method which transfers the multipole 
moment coefficients of a father cell to the local moment coefficient of the target 
cell directly [10]. 
     In this paper, we completed a GPU parallel algorithm for M2L optimization 
using CUDA, and then this paper is organized as follows: In Section 2, we 
analyze and compare three M2L optimization methods through a numerical 
example from three aspects: accuracy, efficiency and memory. In Section 3, a 
GPU parallel strategy on the three-dimensional elastic problems is presented and 
the GPU algorithm is implemented. In Section 4, the example and results are 
discussed in detail. Finally, the paper is summarized, the presented method is 
discussed and the results are obtained in Section 5.  

2 Method of M2L optimization 

2.1 Basic M2L theory 

In the fast multipole algorithm, the local moment coefficient is obtained from the 
transmission from multipole moments to local moments [11]. As shown in 
Fig. 1, the local moment coefficients get from multipole moments coefficient 
when it meets the condition of  c c c cQ P Q Q P P 

   , the formula is as follows: 
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Figure 1: Translation from the multipole moment to local moment. 
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     In order to facilitate operating the data in the tree structure of the Fast 
Multipole Boundary Element Method (FMBEM), List 2 recorded as L2(c), also 
known as interaction list of c, is the collections which contain the cells that are 
not adjacent with c but their parent adjacent with the c’s parent. 

2.2 Optimization methods for M2L 

M2L optimization method based on the exponential moments with the 
introduction of this new concept, makes M2L process replaced by the coefficient 
transformation of multipole moments to exponential moments (M2X for short), 
the coefficient transmission between the exponential expansions (X2X for short) 
and the coefficient transformation of exponential moments to local 
moments (X2L for short) processes [3]. The Fast Multipole Boundary Element 
Method (FMBEM) with exponential moments was called New FMBEM [12]. Its 
process is shown in Figs 2 and 3. 
     The transmission of the previous M2L is used among the cells in the same 
level, each cell contains a maximum of 189 cells which meet the M2L 
transmission requirement. When two cells are not in the same level, however, 
they may still meet the distance condition which can be operated M2L 
transmission. This transmission method from child cells to father cell makes the 
maximum M2L times down to 119 and improve the computational efficiency 
under the condition of meeting the original error limits [8].  
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Figure 2: Converting from M2L 
to M2X, X2X and X2L. 

Figure 3: Cube c, and the cube 
that meet the moment 
condition. 

     The principles of this method are shown as follows.L2(c)can be subdivided to 
L2,1(c) and L2,2(c) according to the distance between the cell and c’s parent cell, 
among this, L2,1(c) represents the part collections of the far away and L2,2(c) is 
the close part (shown as Fig. 4). Assume that the side length of the cube 
represented by c is l, the distance between the centre cell of L2(c) and c’s parent 
cell is r, so there exists the following relationship for any cell in the collection 
L2(c) in the formula (1): 
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Figure 4: L2(c)-classification based on the distance of c’s father cell. 

     This optimization method is very similar with the method in Section 2.2 
except its translation direction and list subdivision. In this method, L2(c) can be 
subdivided to L2,1(c) and L2,2(c) according to the distance r, assume that the side 
length of the father cell is l [9], it is shown as formula (2). 

2.3 Analysis of the optimization methods 

The programs of this section are executed on a desktop computer: Inteli7-2600K 
3.40 GHz (Single-core calculation), OS is Windows XP, RAM is DDR3 
SDRAM (2GB), the compiler for CPU code is Microsoft Visual Studio 2008, 
double precision is used in the CPU numerical example. This example is a 
chassis part whose size and boundary conditions are shown in Fig. 5. The surface 
of the chassis part is meshed with linear triangular elements, and the degrees of 
freedom (DOFs) are 19314, and the order of the multipole moment and local 
moment is separately set to 6, 8 and 10, the convergence residual error of the 
GMRES algorithm is set to 10-3. 
     The comparison of the example accuracy is the right side vector b of the 
boundary element system equations Ax=b. bbem is the result vector of direct 
matrix vector multiplication in the traditional BEM, and bfbem represents the 
result vector of the different M2L of the FMBEM, the relative error between 
the two is defined as follows: 
 

ߝ  ൌ
೑್೐೘||మ࢈ି࢓ࢋ࢈࢈||

೐೘||మ್࢈||
 (3) 
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Figure 5: Chassis parts model. 

     The results and comparisons are shown in Tables 1–3. Through them, we 
found that exponential moment method’s accuracy is high, but its accuracy 
depends on both the order of the exponential moment and the moment, so the 
target accuracy is needed to the reasonable collocation for them. Translation 
across level method does not need additional memory, but the error of the 
translation from the father cell to the child cell is relatively large, so the overall 
effect of the method transferring from the child cells to the father cell is the best 
which is especially suitable for engineering calculation. 

Table 1:  Relative error of the right vector b of different M2L methods. 

p M2L M2L_E M2L_N M2L_NF 

g=8 g=17 

6 1.283×10-4 6.466×10-4 1.284×10-4 2.150×10-4 2.223×10-4 

8 1.552×10-5 6.336×10-4 1.582×10-5 2.762×10-5 2.856×10-5 

10 2.275×10-6 6.335×10-4 2.208×10-6 5.240×10-6 5.418×10-6 

Table 2:  Consumption time of different M2L methods (units: CPU-Q9400). 

p M2L M2L_E M2L_N M2L_NF 
g=8 g=17 

6 14.8 14.9 15.85 14.7 14.8 
8 30.6 28.8 51.2 25.6 25.9 
10 53.7 29.9 67.7 41.8 41.9 

Table 3:  The amount of memory of different M2L methods (unit: MB) 

p M2L M2L_E M2L_N M2L_NF 

g=8 g=17 
6 114.1 115.9 119.3 114.1 114.1 

8 114.7 135.6 139.3 114.7 114.7 

10 115.5 149.0 154.1 115.5 115.5 
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3 Implementation of parallel strategy using CUDA 

3.1 GPU parallel computing based CUDA architecture  

CUDA, based on the C language and can write the execution program of the 
display chip through the language similar with C language, is NVIDIA GPU 
(General Purpose GPU) model [13], and its computation is based on GPU. In the 
CUDA architecture, the program consists of the host and the device two parts 
[8], among them, the host is responsible for the serial parts while the device for 
the parallel [14]. The program of the device is known as “Kernel”. The smallest 
execution unit of GPU is Thread, and the CUDA architecture can contain tens of 
thousands of thread which is very suitable for large-scale fine-grained data 
parallel computation [15, 16]. 

3.2 GPU parallel strategy of M2L 

According to the theory of the chapter 2.1, the outermost level cycle is cell 
circulation rather than level circulation which shows that M2L is very suitable 
for parallel computation. In the parallel strategy one Block is responsible for a 
M2L transmission of each cell, and one thread is responsible for the computation 
of the coefficient which is corresponding to a set of subscript (n, m) of the 
formula (2.1). 
     When using the M2L transmission method of section 2.2, algorithm 1 of 
Section 2.1 can’t be paralleled directly because of writing data conflict problem. 
Shown as Fig. 7, cell c1 and c2 have the same father cell and cell d1, cell d1 and 
cell d2 respectively belong to L2,2(c1) and L2,2(c2) which meet the requirement of 
M2L transmission across the level. If their multipole moments coefficients were 
transferred to the center of the c1and c2‘s father cell pc, there would be writing 
data conflict shown as Fig. 6, because the local moments coefficient of the c1 
and c2’s father cell would be modified when the parallel computation is 
operating. 
 

Cell c2

Cell d1 L2,2(c1)

Cell d2 L2,2(c2)

Cell c1

Cell pc

 

Figure 6: Writing data conflict in M2L method. 

     In order to overcome this problem, the tree structure should be improved, the 
list L2,2(pc) of each cell pc from the 1st to the last level nlevel should be redefined 
as L’

2,2(pc) which is the collections of L2,2(ci) of each child cell of pc defined in 
the section 2.2, that is: 
ଶ,ଶܮ 

ᇱ ሺ݌௖ሻ ൌ ⋃	ଶ,ଶሺܿଷሻܮ⋃ଶ,ଶሺܿଶሻܮ⋃ଶ,ଶሺܿଵሻܮ  ଶ,ଶሺܿ௜ሻ (4)ܮ
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     Through the above improvement, there is no writing data conflict in the 
specific computation, and the computation can be parallel, meanwhile, the M2L 
computation of the cells from the 1st level should be added while its computation 
is too little to be ignored because of the rare cells in the 1st level.  
     Each M2L of the subscript (j, k) is independent, thus ‘‘one-block-one-cell’’ 
mode of parallelization is adopt to compute M2L shown in Fig. 7. According to 
the property of the FMBEM, we propose a particular thread distribution strategy 
that assigns each thread in a block to compute the values of Lj,k(Qc), Ln,j,k(Qc), 
L’

j,k(Qc) and L’
n,j,k(Qc)of each j and k pair (named (j,k) for short) in Eq. (1), and 

one Block is responsible for the computation of a target cell shown in Fig. 8. The 
number of moments order is t, the value domain of (j, k) is 

 ൜
0 ൑ ݆ ൑ ݐ
െ݆ ൑ ݇ ൑ ݆	൫݆, ݇ ∈ ݖ

ሺ݄݁ݐ	ݐ݁ݏ	݂݋	ݏݎ݁݃݁ݐ݊݅ሻ൯ (5) 

where it can be obtained that k is symmetrical about 0, and the multipole 
moments in Eq. (1) have the following property: 
 

௝,ି௞ሺܳ௖ሻܮ ൌ ሺെ1ሻ௞ܮఫ,௞തതതതሺܳ௖ሻሺ݇ ൒ 0ሻ, 

௡,௝,ି௞ܮ ሺܳ௖ሻ ൌ ሺെ1ሻ௞ܮ௡,ఫ,௞തതതതതതതሺܳ௖ሻሺ݇ ൒ 0ሻ, 

௝,ି௞ܮ
ᇱ ሺܳ௖ሻ ൌ ሺെ1ሻ௠௞ܮఫ,௞

ᇱതതതതሺܳ௖ሻሺ݇ ൒ 0ሻ,	

	 ௡,௝,ି௞ܮ
ᇱ ሺܳ௖ሻ ൌ ሺെ1ሻ௞ܮ௡,ఫ,௞

ᇱതതതതതതതሺܳ௖ሻሺ݇ ൒ 0ሻ	 (6) 

     In order to save the memory which is especially limited in GPU, only the 
multipole moments of k>=0 are stored, and the values when k<0are obtained 
from Eq. (1). The detail (j,k) distribution is shown in Fig. 9, like the indices of a 
lower triangular matrix. One dimension arrays are used to store multipole 
moments, Lj,k(Qc) and L’

j,k(Qc) need one array separately, and Ln,j,k(Qc), 
L’

n,j,k(Qc)need three arrays respectively (each n of Ln,j,k(Qc) or L’
n,j,k(Qc) need one 

array). The location of (j,k) in an array is 

௝,௞ݐܿ݋݈  ൌ
௝ሺ௝ାଵሻ

ଶ
൅ ݇ (7) 

as shown in Fig. 8. 
 

   

Object Cell 1 Object Cel l 2

Device
Grid

Block 1 Block 2 Block 3

Object Cell 2

             

Figure 7: Corresponding relation. Figure 8: Distribution of the 
subscript (j, k) between 
the target cell and the 
block coefficients needed 
to calculate. 
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Figure 9: Allocation strategy in the thread of the Block. 

     One thread is assigned to charge one (j, k) computation of the multipole 
moments, then the number of threads in one block is (t+1)(t+2)/2, and the thread 
to (j, k) mapping relationship is shown in Fig. 9. 
     In this parallel mode, all M2L translations are stored in shared memory in the 
process of parallel computing, and the results are copied from shared memory to 
global memory. The multipole moments just need to be computed in their own 
cell, but when the M2L is computed in a cell, all M2L translations of all cells in 
the interacting cell list of that cell have to be computed and added together. 
When the number of target cells is large enough, the computing capability of 
GPU can be fully utilized. In the CUDA architecture, the GPU parallel 
computing algorithm steps of M2L are as follows: 
Algorithm 2: GPU parallel computing algorithm of M2L  
Note: nlevel is the tree structure levels, Ci is the ith level of the tree structure. 
N1 is the sum of the cells from C1 level to Cnlevel, the corresponding Block 
number is numblocks1=N1 
N2 is the sum of the cells from C2level to Cnlevel, the corresponding Block 
number is numblocks2=N2 
Number of threads in a Block is: t(t+1)/2+t+1. 
Let bid=block ID, represent the Cbid cell, tid =local thread ID in a Block. 
(1) and (2) need to call the kernel function respectively 
Start algorithm 
(1)forbid=0,1,…numblocks2-1in parallel do 
forcell dL2,1(cbid)do 

Each thread tid do parallel computing, transfer from the multipole 
moments coefficient of the cell d’s subscript (j, k) to the local moments 
coefficient of the cell cbid’s location, and then do accumulating. 

      end ford 
   end forbid 
(2)for bid=0,1,…numblocks2-1inparallel do 
forcell dL2,2(cbid)do 

Each thread tid do parallel computing, transfer from the multipole 
moments coefficient of the cell d’s subscript (j, k) to the local moments 
coefficient of the cell cbid’s location, and then do accumulating. 

      end ford 
    end forbid 
End algorithm 
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4 Numerical example 

The FMBEM programs are executed on a desktop computer: Intel Core i7 2600k 
(3.4 GHz), GPU is NVIDIA GeForce GTX580, OS is Windows 7, RAM is 
DDR3 SDRAM (8 GB), the compiler for CPU code is Microsoft Visual Studio 
2008, and the compiler for GPU codes is NVIDIA CUDA 4.0 (C language), 
double precision is used in the CPU numerical example while single precision 
used in the GPU computation. The maximum number of the cells in the leaf cell 
is set to 32, the order of the moment is set to 6, the residual error for convergence 
of the GMRES algorithm is set to 10-3, and the finite element is computed by 
using ANSYS 13.0 software. 
     This example is the same as which size and boundary conditions are shown in 
Fig. 2. The Elastic Modulus is 260000 MPa, Possion’s ratio is 0.3. The surface of 
the chassis parts is meshed with linear triangular elements, and the degrees of 
freedom (DOFs) have three types which are shown in Table 4, and the chassis 
parts were discreted with tetrahedron quadratic elements in ANSYS whose size 
is set to the same as the size of the triangular element using in the fast multipole 
boundary element method. 
     Table 4 shows the information of the chassis parts model in the different 
methods to calculate, among them, “FBEM_C” represents the solving in the 
CPU serial FMBEM, “FBEM_G” is GPU parallel FMBEM to solve. In the 
ANSYS column, two numerical values are separated by the symbol “||”, the 
former represents the total memory taken up by the solver when solving, and the 
latter shows that the total memory need by the computing using the in-core way. 
Obtained from the calculation time, FBEM_C solving speed has exceeded 
ANSYS, but little difference between the computing time, and FBEM_G 
computation time significantly smaller than the other two. 
 
 

Table 4:  The related information of different methods for solving machine 
tool model. 

Element size type DOFs 
Iteration 
number 

Total 
time(s) 

Total 
memory(MB) 

FBEM_C(Type 1) 19314 12 14.7 90.3 

FBEM_C(Type 2) 37698 45 123.1 230.4 

FBEM_C(Type 3) 100029 58 384.6 481.2 

FBEM_G(Type 1) 19314 12 7.1 88.6 

FBEM_G(Type 2) 37698 43 34.6 180.2 

FBEM_G(Type 3) 100029 58 99.2 290.8 

ANSYS(Type 1) 137805 - 12.3 848||807 

ANSYS(Type 2) 355014 - 253.7 265.5||2841 

ANSYS(Type 3) 1726773 - 3706.5 2380||26172 
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Figure 10: Comparison between Fbem_g, Fbem_c and ANSYS. 

     At the same time, FBEM_G/ANSYS speedup is larger than 
FBEM_G/FBEM_C because FBEM_C (memory) and FBEM_G (video memory) 
are much lower than ANSYS (memory) from the amount of memory taken by 
the solution. There are three types of element size in the example and the results 
are shown in Table 4, and the comparison for the consumption time, speed-up 
ratio and memory usage between the CPU serial, GPU parallel and ANSYS 
computation are shown in Fig. 10. It can be obtained that the speedup ratio of 
FBEM_G/FBEM_C and FBEM_G/ANSYS is more and more significant as the 
computing scale is larger and larger. 
     The FBEM_C, FBEM_G and ANSYS total displacement and Von Mises 
Stress of the chassis parts model were given in Figs 11 and 12 The linear 
element was used in the FBEM_C and FBEM_G computing while the quadratic 
element in the ANSYS computing. From the figures, it can be observed that the 
 

 
(a) FBEM                                (b) ANSYS 

Figure 11: Total displacement distribution of the chassis parts model. 
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 (a) FBEM                                (b) ANSYS 

Figure 12: Von Mises Stress distribution of the chassis parts model. 

distribution and the results of the three are consistent, the stress error is larger 
than the displacement; this phenomenon is due to that the stress computation 
accuracy of the linear element is poorer. 

5 Conclusion 

We compared the three M2L optimization algorithms of the Fast Multipole 
Boundary Element Method through an engineering example, and then presented 
a GPU parallel strategy for one of the three which transferred from the child cell  
coefficient to the father cell coefficient in the M2L process, and used this GPU 
acceleration algorithm in a 3D elasticity problem. In order to eliminate the data 
conflict, the tree structure was improved, and this algorithm was verified by an 
engineering example. The example results shows that the GPU parallel 
computing using CUDA in this paper has a significant acceleration effect and 
less memory usage compared to ANSYS computation under the same scale, and 
the speed-up ratio of the GPU/ANSYS and GPU/CPU is larger and larger while 
the computation scale increasing. The experiment results show that the theory 
and method of this paper is effective and feasible, and the GPU parallel 
algorithm of the FMBEM can realize the calculation of a larger problem. 
     In the future, we will do further research on improving the calculation 
accuracy using quadratic element, optimizing the GPU parallel algorithm in this 
paper to speed it up further.  
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