
M2L optimization in FMBEM and its
GPU implementation

Zhaohui Xia, Qifu Wang, Yunhua Liu, Yingjun Wang
& Yixiong Wei
National CAD Support Software Engineering Research Center,
Huazhong University of Science and Technology, China

Abstract

The translation from multipole moments to local moments (M2L) in the fast
multipole boundary element method (FMBEM) costs too much time; we
compare three methods of M2L optimization from the three following aspects:
accuracy, efficiency and memory usage with an engineering numerical example,
and then present a GPU parallel algorithm using CUDA for one of the front three
methods which transfers child cell’s coefficients to their father cell, meanwhile,
improve the tree structure by redefining the whole cells in different levels which
can avoid writing data conflict in the parallel strategy. Finally, we use the three-
dimensional elastic BEM problems of chassis parts to verify the algorithm, and
the result shows that the accelerating effect of this method is significant.
Keywords: fast multipole method, boundary element method, 3D elasticity, GPU,
CUDA.

1 Introduction

The fast multipole method (FMM) was invented in the late 1980s by Rokhlin and
Greengard [2]. The basic idea of the FMM is to unite as a collection of particles
by region, and then replace the effect between the two particles with the particle
collection which should adopt the hierarchical tree data to reduce the complexity
of N-body problems [1]. There are two types of the tree structures in the FMM:
the full tree structure [2, 3] and the adaptive tree structure [4, 5], but nowadays
the adaptive tree structure is widely used for its high efficiency and adaptivity.
 The boundary element method (BEM) combined with the FMM can
efficiently deal with large-scale engineering and scientific problems [6, 7], which

Boundary Elements and Other Mesh Reduction Methods XXXVI 307

 www.witpress.com, ISSN 1743-355X (on-line)
WIT Transactions on Modelling and Simulation, Vol 56, © 2013 WIT Press

doi:10.2495/BEM360261

is called fast multipole BEM (FMBEM). According to the time-consuming
analysis of the various parts of the FMBEM, it was found that the translation
from multipole moments to local moments (M2L) is one of the most time-
consuming parts, if M2L calculation could be accelerated, the efficiency of the
fast multipole algorithm would be improved in whole.
 In order to accelerate M2L calculation, Greengard and Rokhlin [3] introduced
the exponential moments to the M2L process in the late 1990s. They proposed a
new type of fast multipole algorithm whose precision is controlled and
acceleration effect is remarkable when the order of the moments is large, but this
algorithm costs large memory and its acceleration effect is not obvious if the
order of the moments is small. In recent years, Gumerov and Duraiswami [8]
optimized the M2L process of the FMM, the multipole moment coefficients were
transferred to the local moment coefficients of the target cell’s father cell when
the cell meets the condition of a certain distance; thereby the amount of
computing M2L is reduced. The corresponding research about this is very little
because the optimization is relatively new. Furthermore, Bapat and Liu [9]
proposed a similar M2L optimization method which transfers the multipole
moment coefficients of a father cell to the local moment coefficient of the target
cell directly [10].
 In this paper, we completed a GPU parallel algorithm for M2L optimization
using CUDA, and then this paper is organized as follows: In Section 2, we
analyze and compare three M2L optimization methods through a numerical
example from three aspects: accuracy, efficiency and memory. In Section 3, a
GPU parallel strategy on the three-dimensional elastic problems is presented and
the GPU algorithm is implemented. In Section 4, the example and results are
discussed in detail. Finally, the paper is summarized, the presented method is
discussed and the results are obtained in Section 5.

2 Method of M2L optimization

2.1 Basic M2L theory

In the fast multipole algorithm, the local moment coefficient is obtained from the
transmission from multipole moments to local moments [11]. As shown in
Fig. 1, the local moment coefficients get from multipole moments coefficient
when it meets the condition of  c c c cQ P Q Q P P 

   , the formula is as follows:

Q

P

Pc

M2L

Qc

Figure 1: Translation from the multipole moment to local moment.

308 Boundary Elements and Other Mesh Reduction Methods XXXVI

 www.witpress.com, ISSN 1743-355X (on-line)
WIT Transactions on Modelling and Simulation, Vol 56, © 2013 WIT Press

 In order to facilitate operating the data in the tree structure of the Fast
Multipole Boundary Element Method (FMBEM), List 2 recorded as L2(c), also
known as interaction list of c, is the collections which contain the cells that are
not adjacent with c but their parent adjacent with the c’s parent.

2.2 Optimization methods for M2L

M2L optimization method based on the exponential moments with the
introduction of this new concept, makes M2L process replaced by the coefficient
transformation of multipole moments to exponential moments (M2X for short),
the coefficient transmission between the exponential expansions (X2X for short)
and the coefficient transformation of exponential moments to local
moments (X2L for short) processes [3]. The Fast Multipole Boundary Element
Method (FMBEM) with exponential moments was called New FMBEM [12]. Its
process is shown in Figs 2 and 3.
 The transmission of the previous M2L is used among the cells in the same
level, each cell contains a maximum of 189 cells which meet the M2L
transmission requirement. When two cells are not in the same level, however,
they may still meet the distance condition which can be operated M2L
transmission. This transmission method from child cells to father cell makes the
maximum M2L times down to 119 and improve the computational efficiency
under the condition of meeting the original error limits [8].

M

X X

L

Multipole moment
coefficient

exponential
moment coefficient

Local moment
coefficient

M2L

O(p4)

M2X O(p3)

X2X

O(p2)

X2LO(p3)

exponential
moment coefficient

x1
x2

x3

UP

DOWN

LEFT RIGHT

FRONT

BACK

(X1)

(X2)

(X3)

c

Figure 2: Converting from M2L
to M2X, X2X and X2L.

Figure 3: Cube c, and the cube
that meet the moment
condition.

 The principles of this method are shown as follows.L2(c)can be subdivided to
L2,1(c) and L2,2(c) according to the distance between the cell and c’s parent cell,
among this, L2,1(c) represents the part collections of the far away and L2,2(c) is
the close part (shown as Fig. 4). Assume that the side length of the cube
represented by c is l, the distance between the centre cell of L2(c) and c’s parent
cell is r, so there exists the following relationship for any cell in the collection
L2(c) in the formula (1):

Boundary Elements and Other Mesh Reduction Methods XXXVI 309

 www.witpress.com, ISSN 1743-355X (on-line)
WIT Transactions on Modelling and Simulation, Vol 56, © 2013 WIT Press

 ቐ

√ଷ

ଶ
݈ ൑ ݎ ൑ √ଷହ

ଶ
݈, ݀ ∈ ଶ,ଵሺܿሻܮ

√ସଷ

ଶ
݈ ൑ ݎ ൑

ହ√ଷ

ଶ
݈, ݀ ∈ ଶ,ଶሺܿሻܮ

 (1)

 ቐ

√ଷ

ଶ
൑ ݎ ൑ 2݈

2݈ ൏ ݎ ൑ √ଵ଴଺

ସ
݈
 (2)

c

L2,1(c) Cell L2,2(c) Cell

Figure 4: L2(c)-classification based on the distance of c’s father cell.

 This optimization method is very similar with the method in Section 2.2
except its translation direction and list subdivision. In this method, L2(c) can be
subdivided to L2,1(c) and L2,2(c) according to the distance r, assume that the side
length of the father cell is l [9], it is shown as formula (2).

2.3 Analysis of the optimization methods

The programs of this section are executed on a desktop computer: Inteli7-2600K
3.40 GHz (Single-core calculation), OS is Windows XP, RAM is DDR3
SDRAM (2GB), the compiler for CPU code is Microsoft Visual Studio 2008,
double precision is used in the CPU numerical example. This example is a
chassis part whose size and boundary conditions are shown in Fig. 5. The surface
of the chassis part is meshed with linear triangular elements, and the degrees of
freedom (DOFs) are 19314, and the order of the multipole moment and local
moment is separately set to 6, 8 and 10, the convergence residual error of the
GMRES algorithm is set to 10-3.
 The comparison of the example accuracy is the right side vector b of the
boundary element system equations Ax=b. bbem is the result vector of direct
matrix vector multiplication in the traditional BEM, and bfbem represents the
result vector of the different M2L of the FMBEM, the relative error between
the two is defined as follows:

ߝ ൌ
೑್೐೘||మ࢈ି࢓ࢋ࢈࢈||

೐೘||మ್࢈||
 (3)

310 Boundary Elements and Other Mesh Reduction Methods XXXVI

 www.witpress.com, ISSN 1743-355X (on-line)
WIT Transactions on Modelling and Simulation, Vol 56, © 2013 WIT Press

22mm

Stress
Surface

Figure 5: Chassis parts model.

 The results and comparisons are shown in Tables 1–3. Through them, we
found that exponential moment method’s accuracy is high, but its accuracy
depends on both the order of the exponential moment and the moment, so the
target accuracy is needed to the reasonable collocation for them. Translation
across level method does not need additional memory, but the error of the
translation from the father cell to the child cell is relatively large, so the overall
effect of the method transferring from the child cells to the father cell is the best
which is especially suitable for engineering calculation.

Table 1: Relative error of the right vector b of different M2L methods.

p M2L M2L_E M2L_N M2L_NF

g=8 g=17

6 1.283×10-4 6.466×10-4 1.284×10-4 2.150×10-4 2.223×10-4

8 1.552×10-5 6.336×10-4 1.582×10-5 2.762×10-5 2.856×10-5

10 2.275×10-6 6.335×10-4 2.208×10-6 5.240×10-6 5.418×10-6

Table 2: Consumption time of different M2L methods (units: CPU-Q9400).

p M2L M2L_E M2L_N M2L_NF
g=8 g=17

6 14.8 14.9 15.85 14.7 14.8
8 30.6 28.8 51.2 25.6 25.9
10 53.7 29.9 67.7 41.8 41.9

Table 3: The amount of memory of different M2L methods (unit: MB)

p M2L M2L_E M2L_N M2L_NF

g=8 g=17
6 114.1 115.9 119.3 114.1 114.1

8 114.7 135.6 139.3 114.7 114.7

10 115.5 149.0 154.1 115.5 115.5

Boundary Elements and Other Mesh Reduction Methods XXXVI 311

 www.witpress.com, ISSN 1743-355X (on-line)
WIT Transactions on Modelling and Simulation, Vol 56, © 2013 WIT Press

3 Implementation of parallel strategy using CUDA

3.1 GPU parallel computing based CUDA architecture

CUDA, based on the C language and can write the execution program of the
display chip through the language similar with C language, is NVIDIA GPU
(General Purpose GPU) model [13], and its computation is based on GPU. In the
CUDA architecture, the program consists of the host and the device two parts
[8], among them, the host is responsible for the serial parts while the device for
the parallel [14]. The program of the device is known as “Kernel”. The smallest
execution unit of GPU is Thread, and the CUDA architecture can contain tens of
thousands of thread which is very suitable for large-scale fine-grained data
parallel computation [15, 16].

3.2 GPU parallel strategy of M2L

According to the theory of the chapter 2.1, the outermost level cycle is cell
circulation rather than level circulation which shows that M2L is very suitable
for parallel computation. In the parallel strategy one Block is responsible for a
M2L transmission of each cell, and one thread is responsible for the computation
of the coefficient which is corresponding to a set of subscript (n, m) of the
formula (2.1).
 When using the M2L transmission method of section 2.2, algorithm 1 of
Section 2.1 can’t be paralleled directly because of writing data conflict problem.
Shown as Fig. 7, cell c1 and c2 have the same father cell and cell d1, cell d1 and
cell d2 respectively belong to L2,2(c1) and L2,2(c2) which meet the requirement of
M2L transmission across the level. If their multipole moments coefficients were
transferred to the center of the c1and c2‘s father cell pc, there would be writing
data conflict shown as Fig. 6, because the local moments coefficient of the c1
and c2’s father cell would be modified when the parallel computation is
operating.

Cell c2

Cell d1 L2,2(c1)

Cell d2 L2,2(c2)

Cell c1

Cell pc

Figure 6: Writing data conflict in M2L method.

 In order to overcome this problem, the tree structure should be improved, the
list L2,2(pc) of each cell pc from the 1st to the last level nlevel should be redefined
as L’

2,2(pc) which is the collections of L2,2(ci) of each child cell of pc defined in
the section 2.2, that is:
ଶ,ଶܮ

ᇱ ሺ݌௖ሻ ൌ ⋃	ଶ,ଶሺܿଷሻܮ⋃ଶ,ଶሺܿଶሻܮ⋃ଶ,ଶሺܿଵሻܮ ଶ,ଶሺܿ௜ሻ (4)ܮ

312 Boundary Elements and Other Mesh Reduction Methods XXXVI

 www.witpress.com, ISSN 1743-355X (on-line)
WIT Transactions on Modelling and Simulation, Vol 56, © 2013 WIT Press

 Through the above improvement, there is no writing data conflict in the
specific computation, and the computation can be parallel, meanwhile, the M2L
computation of the cells from the 1st level should be added while its computation
is too little to be ignored because of the rare cells in the 1st level.
 Each M2L of the subscript (j, k) is independent, thus ‘‘one-block-one-cell’’
mode of parallelization is adopt to compute M2L shown in Fig. 7. According to
the property of the FMBEM, we propose a particular thread distribution strategy
that assigns each thread in a block to compute the values of Lj,k(Qc), Ln,j,k(Qc),
L’

j,k(Qc) and L’
n,j,k(Qc)of each j and k pair (named (j,k) for short) in Eq. (1), and

one Block is responsible for the computation of a target cell shown in Fig. 8. The
number of moments order is t, the value domain of (j, k) is

 ൜
0 ൑ ݆ ൑ ݐ
െ݆ ൑ ݇ ൑ ݆	൫݆, ݇ ∈ ݖ

ሺ݄݁ݐ	ݐ݁ݏ	݂݋	ݏݎ݁݃݁ݐ݊݅ሻ൯ (5)

where it can be obtained that k is symmetrical about 0, and the multipole
moments in Eq. (1) have the following property:

௝,ି௞ሺܳ௖ሻܮ ൌ ሺെ1ሻ௞ܮఫ,௞തതതതሺܳ௖ሻሺ݇ ൒ 0ሻ,

௡,௝,ି௞ܮ ሺܳ௖ሻ ൌ ሺെ1ሻ௞ܮ௡,ఫ,௞തതതതതതതሺܳ௖ሻሺ݇ ൒ 0ሻ,

௝,ି௞ܮ
ᇱ ሺܳ௖ሻ ൌ ሺെ1ሻ௠௞ܮఫ,௞

ᇱതതതതሺܳ௖ሻሺ݇ ൒ 0ሻ,	

	 ௡,௝,ି௞ܮ
ᇱ ሺܳ௖ሻ ൌ ሺെ1ሻ௞ܮ௡,ఫ,௞

ᇱതതതതതതതሺܳ௖ሻሺ݇ ൒ 0ሻ	 (6)

 In order to save the memory which is especially limited in GPU, only the
multipole moments of k>=0 are stored, and the values when k<0are obtained
from Eq. (1). The detail (j,k) distribution is shown in Fig. 9, like the indices of a
lower triangular matrix. One dimension arrays are used to store multipole
moments, Lj,k(Qc) and L’

j,k(Qc) need one array separately, and Ln,j,k(Qc),
L’

n,j,k(Qc)need three arrays respectively (each n of Ln,j,k(Qc) or L’
n,j,k(Qc) need one

array). The location of (j,k) in an array is

௝,௞ݐܿ݋݈ ൌ
௝ሺ௝ାଵሻ

ଶ
൅ ݇ (7)

as shown in Fig. 8.

Object Cell 1 Object Cel l 2

Device
Grid

Block 1 Block 2 Block 3

Object Cell 2

Figure 7: Corresponding relation. Figure 8: Distribution of the
subscript (j, k) between
the target cell and the
block coefficients needed
to calculate.

Boundary Elements and Other Mesh Reduction Methods XXXVI 313

 www.witpress.com, ISSN 1743-355X (on-line)
WIT Transactions on Modelling and Simulation, Vol 56, © 2013 WIT Press

(0,0) (1,0) (1,1) (2,0) (2,1) (2,2) (t,0) (t,1) (t,2) (t,t)

0 1 2 3 4 5 t(t+1)/2 t(t+1)/2+1t(t+1)/2+2 t(t+1)/2+t

(j, k)

Thread Num

Loctj,k 0 1 2 3 4 5 t(t+1)/2 t(t+1)/2+1t(t+1)/2+2 t(t+1)/2+t

Figure 9: Allocation strategy in the thread of the Block.

 One thread is assigned to charge one (j, k) computation of the multipole
moments, then the number of threads in one block is (t+1)(t+2)/2, and the thread
to (j, k) mapping relationship is shown in Fig. 9.
 In this parallel mode, all M2L translations are stored in shared memory in the
process of parallel computing, and the results are copied from shared memory to
global memory. The multipole moments just need to be computed in their own
cell, but when the M2L is computed in a cell, all M2L translations of all cells in
the interacting cell list of that cell have to be computed and added together.
When the number of target cells is large enough, the computing capability of
GPU can be fully utilized. In the CUDA architecture, the GPU parallel
computing algorithm steps of M2L are as follows:
Algorithm 2: GPU parallel computing algorithm of M2L
Note: nlevel is the tree structure levels, Ci is the ith level of the tree structure.
N1 is the sum of the cells from C1 level to Cnlevel, the corresponding Block
number is numblocks1=N1
N2 is the sum of the cells from C2level to Cnlevel, the corresponding Block
number is numblocks2=N2
Number of threads in a Block is: t(t+1)/2+t+1.
Let bid=block ID, represent the Cbid cell, tid =local thread ID in a Block.
(1) and (2) need to call the kernel function respectively
Start algorithm
(1)forbid=0,1,…numblocks2-1in parallel do
forcell dL2,1(cbid)do

Each thread tid do parallel computing, transfer from the multipole
moments coefficient of the cell d’s subscript (j, k) to the local moments
coefficient of the cell cbid’s location, and then do accumulating.

 end ford
 end forbid
(2)for bid=0,1,…numblocks2-1inparallel do
forcell dL2,2(cbid)do

Each thread tid do parallel computing, transfer from the multipole
moments coefficient of the cell d’s subscript (j, k) to the local moments
coefficient of the cell cbid’s location, and then do accumulating.

 end ford
 end forbid
End algorithm

314 Boundary Elements and Other Mesh Reduction Methods XXXVI

 www.witpress.com, ISSN 1743-355X (on-line)
WIT Transactions on Modelling and Simulation, Vol 56, © 2013 WIT Press

4 Numerical example

The FMBEM programs are executed on a desktop computer: Intel Core i7 2600k
(3.4 GHz), GPU is NVIDIA GeForce GTX580, OS is Windows 7, RAM is
DDR3 SDRAM (8 GB), the compiler for CPU code is Microsoft Visual Studio
2008, and the compiler for GPU codes is NVIDIA CUDA 4.0 (C language),
double precision is used in the CPU numerical example while single precision
used in the GPU computation. The maximum number of the cells in the leaf cell
is set to 32, the order of the moment is set to 6, the residual error for convergence
of the GMRES algorithm is set to 10-3, and the finite element is computed by
using ANSYS 13.0 software.
 This example is the same as which size and boundary conditions are shown in
Fig. 2. The Elastic Modulus is 260000 MPa, Possion’s ratio is 0.3. The surface of
the chassis parts is meshed with linear triangular elements, and the degrees of
freedom (DOFs) have three types which are shown in Table 4, and the chassis
parts were discreted with tetrahedron quadratic elements in ANSYS whose size
is set to the same as the size of the triangular element using in the fast multipole
boundary element method.
 Table 4 shows the information of the chassis parts model in the different
methods to calculate, among them, “FBEM_C” represents the solving in the
CPU serial FMBEM, “FBEM_G” is GPU parallel FMBEM to solve. In the
ANSYS column, two numerical values are separated by the symbol “||”, the
former represents the total memory taken up by the solver when solving, and the
latter shows that the total memory need by the computing using the in-core way.
Obtained from the calculation time, FBEM_C solving speed has exceeded
ANSYS, but little difference between the computing time, and FBEM_G
computation time significantly smaller than the other two.

Table 4: The related information of different methods for solving machine
tool model.

Element size type DOFs
Iteration
number

Total
time(s)

Total
memory(MB)

FBEM_C(Type 1) 19314 12 14.7 90.3

FBEM_C(Type 2) 37698 45 123.1 230.4

FBEM_C(Type 3) 100029 58 384.6 481.2

FBEM_G(Type 1) 19314 12 7.1 88.6

FBEM_G(Type 2) 37698 43 34.6 180.2

FBEM_G(Type 3) 100029 58 99.2 290.8

ANSYS(Type 1) 137805 - 12.3 848||807

ANSYS(Type 2) 355014 - 253.7 265.5||2841

ANSYS(Type 3) 1726773 - 3706.5 2380||26172

Boundary Elements and Other Mesh Reduction Methods XXXVI 315

 www.witpress.com, ISSN 1743-355X (on-line)
WIT Transactions on Modelling and Simulation, Vol 56, © 2013 WIT Press

1 2 3

0

500

1000

1500

2000

2500

3000

1 2 3

0

5

10

15

20

25

30

1 2 3

0

5000

10000

15000

20000

25000

30000

 Tbem_c
 Tbem_g
 Tansys

M
e
m

o
ry

(u
n
it:

 M
B

)
S

p
e
e
d
-u

p
 R

a
tio

T
im

e(
u
n
it:

 s
)

 Fbem_G/Fbem_C
 Fbem_G/ANSYS

Consumption Time Comparation

Speed-up Ratio Comparation

Memory Storage Comparation

Element Size Type

 Mbem_c
 Mbem_g
 Mansys

Figure 10: Comparison between Fbem_g, Fbem_c and ANSYS.

 At the same time, FBEM_G/ANSYS speedup is larger than
FBEM_G/FBEM_C because FBEM_C (memory) and FBEM_G (video memory)
are much lower than ANSYS (memory) from the amount of memory taken by
the solution. There are three types of element size in the example and the results
are shown in Table 4, and the comparison for the consumption time, speed-up
ratio and memory usage between the CPU serial, GPU parallel and ANSYS
computation are shown in Fig. 10. It can be obtained that the speedup ratio of
FBEM_G/FBEM_C and FBEM_G/ANSYS is more and more significant as the
computing scale is larger and larger.
 The FBEM_C, FBEM_G and ANSYS total displacement and Von Mises
Stress of the chassis parts model were given in Figs 11 and 12 The linear
element was used in the FBEM_C and FBEM_G computing while the quadratic
element in the ANSYS computing. From the figures, it can be observed that the

(a) FBEM (b) ANSYS

Figure 11: Total displacement distribution of the chassis parts model.

316 Boundary Elements and Other Mesh Reduction Methods XXXVI

 www.witpress.com, ISSN 1743-355X (on-line)
WIT Transactions on Modelling and Simulation, Vol 56, © 2013 WIT Press

 (a) FBEM (b) ANSYS

Figure 12: Von Mises Stress distribution of the chassis parts model.

distribution and the results of the three are consistent, the stress error is larger
than the displacement; this phenomenon is due to that the stress computation
accuracy of the linear element is poorer.

5 Conclusion

We compared the three M2L optimization algorithms of the Fast Multipole
Boundary Element Method through an engineering example, and then presented
a GPU parallel strategy for one of the three which transferred from the child cell
coefficient to the father cell coefficient in the M2L process, and used this GPU
acceleration algorithm in a 3D elasticity problem. In order to eliminate the data
conflict, the tree structure was improved, and this algorithm was verified by an
engineering example. The example results shows that the GPU parallel
computing using CUDA in this paper has a significant acceleration effect and
less memory usage compared to ANSYS computation under the same scale, and
the speed-up ratio of the GPU/ANSYS and GPU/CPU is larger and larger while
the computation scale increasing. The experiment results show that the theory
and method of this paper is effective and feasible, and the GPU parallel
algorithm of the FMBEM can realize the calculation of a larger problem.
 In the future, we will do further research on improving the calculation
accuracy using quadratic element, optimizing the GPU parallel algorithm in this
paper to speed it up further.

Acknowledgements

This research has been supported by the National Natural Science Foundation of
China under Grant number 51375185 and the National 863 Project of China
under Grant number SS2013AA041301.

Boundary Elements and Other Mesh Reduction Methods XXXVI 317

 www.witpress.com, ISSN 1743-355X (on-line)
WIT Transactions on Modelling and Simulation, Vol 56, © 2013 WIT Press

References

[1] Warren, M.S. and J.K. Salmon. A parallel hashed oct-tree n-body
algorithm. Proceedings of the 1993 ACM/IEEE Conference on
Supercomputing. 1993. ACM.

[2] Greengard, L. and V. Rokhlin, A fast algorithm for particle simulations.
Journal of Computational Physics. 73(2): pp. 325–348, 1987.

[3] Greengard, L. and V. Rokhlin, A new version of the fast multipole method
for the Laplace equation in three dimensions. Act a numerica. 6(1):
pp. 229–269, 1997.

[4] Cheng, H., L. Greengard, and V. Rokhlin, A fast adaptive multipole
algorithm in three dimensions. Journal of Computational Physics. 155(2):
pp. 468–498, 1999.

[5] Zhang, J. and M. Tanaka, Adaptive spatial decomposition in fast multipole
method. Journal of Computational Physics. 226(1): pp. 17–28, 2007.

[6] Wang, Y., et al., An adaptive dual-information FMBEM for 3D elasticity
and its GPU implementation. Engineering Analysis with Boundary
Elements. 37(2): pp. 236–249, 2013.

[7] Zhang, J., M. Tanaka, and M. Endo, The hybrid boundary node method
accelerated by fast multipole expansion technique for 3D potential
problems. International journal for numerical methods in engineering.
63(5): pp. 660–680, 2005.

[8] Gumerov, N.A. and R. Duraiswami, Fast multipole methods on graphics
processors. Journal of Computational Physics. 227(18): pp. 8290–8313,
2008.

[9] Bapat, M. and Y. Liu, A new adaptive algorithm for the fast multipole
boundary element method.Computer Modeling in Engineering &
Sciences(CMES). 58(2): pp. 161–184, 2010.

[10] Wei, Y., et al., Optimizations for Elastodynamic Simulation Analysis with
FMM-DRBEM and CUDA. Computer Modeling in Engineering &
Sciences(CMES). 86(3): pp. 241–273, 2012.

[11] Liu, Y., Fast multipole boundary element method: theory and applications
in engineering 2009: Cambridge university press.

[12] Yoshida, K.-i., Applications of fast multipole method to boundary integral
equation method. Dept. of Global Environment Eng., Kyoto Univ., Japan:
2001.

[13] Shen, L. and Y.J. Liu, An adaptive fast multipole boundary element method
for three-dimensional potential problems. Computational Mechanics. 39(6):
pp. 681–691, 2007.

[14] Araújo, F.C.d., E.F. d’Azevedo, and L.J. Gray, Boundary-element parallel-
computing algorithm for the microstructural analysis of general composites.
Computers & Structures. 88(11): pp. 773–784, 2010.

[15] Labaki, J., E. Mesquita, and L. Saraiva Ferreira. The BEM on general
purpose graphics processing units (GPGPU): a study on three distinct
implementations. Advances in boundary element techniques XI:

318 Boundary Elements and Other Mesh Reduction Methods XXXVI

 www.witpress.com, ISSN 1743-355X (on-line)
WIT Transactions on Modelling and Simulation, Vol 56, © 2013 WIT Press

Proceedings of the 11th International Conference, Berlin, Germany. United
Kingdom: EC Ltd. 2010.

[16] Cunha, M., J. Telles, and A. Coutinho, A portable parallel implementation
of a boundary element elastostatic code for shared and distributed memory
systems. Advances in Engineering Software. 35(7): pp. 453–460, 2004.

Boundary Elements and Other Mesh Reduction Methods XXXVI 319

 www.witpress.com, ISSN 1743-355X (on-line)
WIT Transactions on Modelling and Simulation, Vol 56, © 2013 WIT Press

