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Abstract 

In this paper, the Green’s function for the Laplace equation is adopted to derive 
the boundary integral equation for solving transient heat conduction problems 
with variable heat conductivities and heat sources. As a result, domain integrals 
are involved in the derived integral equations. Firstly, the radial integration 
method is used to convert the domain integrals into equivalent boundary 
integrals. Then, by expanding variables at a discrete time interval, the recursive 
formulation of the governing equation is derived. Finally, the recursive equation 
is solved by the radial integration boundary element method. A self-adaptive 
check technique is carried out to estimate how many expansion terms are needed 
in a time step size. Numerical results show satisfactory performance. 
Keywords:  time-domain precise algorithm, radial integration method, boundary 
element method, self-adaptive check, variable heat conductivity, heat source. 

1 Introduction 

Transient heat conduction problems can be considered as the discretization of 
space and time domain. There are many methods to discretize the space domain, 
such as the finite element method (FEM), the boundary element method (BEM) 
and the finite difference method (FDM) [1]. For the time domain, the FDM is 
frequently used to replace of the derivative item with respect to time. However, 
these result of FDM is unstable when change the time step size [2]. 
     In 1999, Yang [3] presented the precise time integration algorithm, which not 
only can obtain the stable and accurate results, but also can check the required 
number of expansion item by self-adaptive. Up to now, the method combining 
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the precise time-domain method with the FEM has been applied to many fields, 
such as the heat transfer problems [3] and the viscoelastic problems [4]. In 
addition, the method combining the precise time-domain method with the 
element free Galerkin method has been applied to the viscoelastic problems [5]. 
     Compared with FEM and FDM, BEM is very robust to solve the heat 
conduction problems for linear and homogeneous. However, solving the 
problems of the nonlinear, non-homogeneous and variable coefficients by BEM 
is difficult, since the fundamental solutions of these problems can hardly obtain, 
except for some very special cases [6, 7]. It was a good way that the fundamental 
solution of the linear problems to solve the problems of the nonlinear, non-
homogeneous, whereas domain integrals was involved in the resulting integral 
equations. 
     To overcome this difficulty, the dual reciprocity method (DRM) [8] is used to 
transform the domain integrals into the boundary integrals. In this method, the 
transformation is carried out by approximating the source term with a series of 
basis functions and using their particular solutions. DRM has been extensively 
solved for the problems of the non-linear and non-homogeneous [9]. The 
deficiency of this technique is that the particular solutions may be difficult to 
obtain for some complicated problems. In addition, even for known source 
terms, the method still requires an approximation of the known function [9]. 
     In 2002, Gao [10] presented a new transformation technique, which is called 
the radial integration method (RIM). The RIM not only can transform any 
complicated domain integral to the boundary without using particular solution, 
but also can remove various singularities appearing in domain integrals [11]. The 
main feature of the RIM is that it can treat different types of domain integrals 
appearing in the same integral equation in a unified way, since it does not resort 
to particular solutions as in the DRM. The method combining the RIM with the 
BEM is called the radial integration boundary element method (RIBEM) [12]. 
     RIBEM has been widely applied to many fields including dynamic analysis of 
laminate composite plates [13], nonlinear and nonhomogeneous elastic problems 
[14], crack analysis in functionally graded materials [15], viscous flow problems 
[16], and the heat conduction [12, 17]. However, when solving time-dependent 
problems via the RIBEM, solutions are sensitive for different time step size due 
to using finite difference technique to express the derivative term with respect to 
time. 
     In this paper, RIBEM and the precise time integration (RIBEM-PTI) 
algorithm are combined to solve transient heat conduction problems with 
variable heat conductivity and heat source. By expanding the variables of time-
dependent in a discrete time interval, RIBEM recursive equation is derived with 
self-adaptive check technique to improve computing accuracy. Two numerical 
examples are presented to validate the proposed method with satisfactory results. 

2 Governing equation 

Considering a two-dimensional bounded domain   with a spatially variable 
heat conductivity and heat source, the governing equation for transient heat 
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conduction problems in isotropic media can be expressed as 

        , ,
,

i i

T t T t
k f t c

t


    
     

     

x x
x x x

x x
 (1) 

where  ,T tx  is the temperature at point x  and time t ,  k x  denotes the heat 

conductivity,  ,f tx  is a known heat source,   and c represent density and 

specific heat, respectively. The repeated subscript i  denotes the summation 
through its range which is 2 for two-dimensional problem. 
     The initial condition is   0,0 =T Tx , where 0T  is a prescribed function. The 

boundary conditions are 
     1, = ,T t T t x x x  (2) 

     2= ,
T

k q t
n


 


x x x  (3) 

where 1 2 =   ,  is boundary of the solving domain  , T  and q  are 

prescribed temperature history and flux on the boundary,  respectively. 

3 Recursive governing equation in a discrete time interval 

Within a discrete time interval, time-dependent variables T , q  and f  can be 

expanded as 

      ( )
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where  1= - / ( 1,2,3,...)ks t t t k   , T(m) and q(m) are expansion coefficients for the 

temperature and flux, f 

(m) is expansion coefficient for the heat source, -1kt  and t  

denote the beginning time and the size of the time interval, respectively. 
     The derivative of T  with respect to t  and x  can be respectively expressed as 
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Substituting eqns (6), (7) and (8) into eqn (1), and equating powers of Ms , then 
yields 

    
( )

( ) ( 1)1
M

M M

i i

T c
k f M T

t

   
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 (9) 

eqn (9) is a recursive governing equation with order M. 
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     Assuming that eqns (2) and (3) can be expressed in the form 
 

 ( )
1= m mT T s on   (10) 

 ( )
2= m mq q s on   (11) 

there are 
 ( ) ( )

1=M MT T on   (12) 

 ( ) ( )
2=M Mq q on   (13) 

 

eqns (12) and (13) describe boundary conditions of eqn (9) with order M. 

4 Implementation of RIBEM 

4.1 Boundary-domain integral equation 

To derive the boundary integral equation, a weight function G  is introduced to 
eqn (9) and the following domain integral can be written 

    
( )
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Using Gauss’ divergence theorem, the first domain integral can be manipulated 
as 

 

       

       

   

( ) ( )

( ) ( )

( )

, ,

, ,

,

M M

i
i i i

M M
i

i i i

M

i i

T T
G k d G k n d

G G k
k T n d T d

G
k T d

 

 



   
      

  
   

  

 
  

  

 

 



x y x x y x
x x x

x y x y x
x

x x x

x y
x

x x

 (15) 

If the weight function G  is Green’s function  ,G x y  which satisfies the 

following equation: 
 2 ( - ) 0G   x y  (16) 

where  - x y  is the Dirac delta function, according to literature [18], the 

Green’s function  ,G x y  for eqn (16) can be expressed as 

 , = (ln ) / 2G r x y , where r  is the distance between the source point y  and 

the field point x . 
     Based on the integration property of the Dirac delta function, the last domain 
integral of eqn (15) can be written as 

( ) ( )( , )
( ) ( ) ( )M M

i i

G
k T d k T



  
     


x y

x y y
x x

         (17) 

Substituting eqn (17) into eqn (15) and the result into eqn (14), it follows that 
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where  ( )Mq x  is the heat flux,  ( )MT x  and  k x  are the normalized 

temperature and thermal conductivity, respectively, e.g. 
 

   ( ) ( ) /M Mq k T n   x x ;   ( ) ( )( ) ( ) ( )M MT k Tx x x ; 

   lnk kx x ; ( , ) ( ( , ) / ) ( ( ) / )i iV G k     x y x y x x x  
 

A general integral equation is presented by letting  y  as follows: 
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 
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          (19) 

 

where ( ) ( ) / 2c  y y ,   y  is the interior angle at a point y  of the boundary 

 . Particularly,  =0.5c y  if y  is a smooth point on the boundary. 

4.2  Transformation of domain integrals to the boundary by RIM 

In general, the heat source  ,f tx  is a known function. Therefore, ( )Mf  can be 

obtained by expanding coefficients of  ,f tx  in a time interval. In these 

circumstances, RIM [10] can be directly used to transform the first domain 
integral in eqn (19) to the boundary as follows: 
 

      ( ) ( )1
, ,

,
M Mr

G f d F d
r n 


  

 x y z y
z y

 (20) 

where 

     ,( ) ( )

0
, ,

rM MF G f rdr 
z y

z y x y  (21) 
 

For the last two domain integrals in eqn (19), since the normalized temperature 
( )MT  and 1MT （ ） are involved, which are unknown, the RIM formulations 

cannot be directly used. To solve this problem, ( )MT  and ( 1)MT   are 
approximated by the combination of the radial basis functions (RBFs) and the 
polynomials in terms of global coordinates [12, 14]. Thus, ( )MT  and ( 1)MT   are 
expressed as follows [12]: 
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M
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M
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T R b b b 
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The following equilibrium conditions have to be satisfied [19] 
 

 1 2
1 1 1

0
N N N

k k
k k k

k k k

  
  

    x x  (24) 
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0
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k k
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k k k

  
  

    x x  (25) 

where b IN N N   and bN , IN  are the number of boundary and interior nodes, 

respectively, = - kR x x  is the distance from application point kx  to the field 

point x , k
ix  is the coordinates of each of the k-th field point,  R  is the RBF. 

In this paper, the compactly supported fourth-order spline RBF is adopted, e.g. 
 

  
2 3 41 6( / ) 8( / ) 3( / ) 0

0
k k k k

k

k

R d R d R d R d
R

d R


      


 (26) 

 

in which kd  is radius of the supported region at the k-th point. 

     The coefficients k  for 1, 2, ,k N  , 1a , 2a  and 3a  in eqn (22) can be 

determined by collocating the application point x  in eqn (22) at all nodes. A set 

of algebraic equations can be written in the matrix form as M
 T  , 

where  T

1 2 1 2 3, , , , , ,N a a a    ,  T( ) ( ) ( ) ( )
1 2, , , ,0,0,0M M M M

NT T T T    . If no 

two nodes share the same coordinates, the matrix   is invertible and thereby  
 

 1 ( )M


 T   (27) 
 

For ( 1)MT   in eqn (23), a similar expression is adopted, e.g. 
 

 ( 1)M


 T    (28) 

 1 ( 1)= M


 T   (29) 
 

where  T

1 2 1 2 3, , , , ,N b b b    ,  T( 1) ( 1) ( 1) ( 1)
1 2, , , ,0,0,0M M M M

NT T T
   T    .  

     Substituting eqn (22) into the second domain integral in eqn (19) and 
transforming it to the boundary applying the RIM, the following results can be 
obtained: 
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2
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=
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 
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where 
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 T( ) ( ) ( ) ( )
1 2, , ,M M M M

NT T TT    , yV  is a N dimensional row vector. 

     Substituting eqn (23) into the last domain integral in eqn (19) and 
transforming it to the boundary applying the RIM, the similar expression can be 
presented as 
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 
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 






 
    

 

      

   

  y

x y

x

y C T




           (32) 

where  
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Also,  T( 1) ( 1) ( 1) ( 1)
1 2, , ,M M M M

NT T T   T    , yC  is a N dimensional row vector. 

The radial integrals in eqns (21) (31) and (33) can be evaluated by numerical 
method [10]. 
     Substituting eqns (20), (30) and (32) into eqn (19), a pure boundary integral 
equation is obtained as follows: 

 
           

 
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( ) ( ) ( 1)

,
,

1
1

M M M

M M M

G
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n
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F d M
r n t


 






    




    
 

 
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 

 
       (34) 

4.3 Algebraic system of equations 

Assuming that the boundary   is discretized into bN  linear elements and the 

region is distributed IN  internal nodes, the total number of nodes is = +b IN N N . 

Eqn (34) can be conveniently expressed in the following matrix form [12]: 
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 ( ) ( ) ( ) ( ) ( ) ( 1)ˆ 1M M M M M M
b b b b b b b b

c
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t
       

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where       1 2=diag , , , 
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M M M M
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M M M M
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I

M M M M
I Nf f ff  , the matrices bG , ˆ

bH , IG  and ˆ
IH  correspond to 

the coefficients of boundary integrals, M
bf , bV , bC , M

If , IV  and IC  refer to the 

coefficients of domain integrals term. 
     After the application of boundary conditions, eqns (35) and (36) can be recast 
as 

 ( ) ( ) ( ) ( 1)1M M M M
b b b b b

c
M on

t

     


A X Y V T C T   (37) 

 ( ) ( ) ( ) ( ) ( 1)1M M M M M
I I b I I I

c
M in

t

      


T A X Y V T C T    (38) 

where the dimensions of the coefficient matrix bA  and IA  are b bN N  and 

I bN N , respectively; bV  and bC  are bN N ; IV  and IC  are IN N . Vector 
M
bX  with the dimension of bN  consists of unknown boundary temperatures or 

unknown fluxes. ( )M
bY  and ( )M

IY  are the contribution of known boundary 

variables. It is noted that the integration results ( )M
bf  and ( )M

If  have been 

assembled into the known vectors ( )M
bY  and ( )M

IY  in eqns (37) and (38). 

4.4 Self-adaptive check 

In the first time interval, 0T  or 0q  are provided by eqns (12) and (13), in other 

time intervals, initial conditions will be given by 

 ( )
1

0

m
s

m

T T


   (at the last time interval) (39) 

 ( )
1

0

m
s

m

q q


  (at the last time interval) (40) 

By using proper initial conditions and eqns (37) and (38), the transient behavior 
of temperature can be traced step by step. 
     A self-adaptive scheme is carried out at each of time intervals with a 
convergence criteria 
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-1

( ) ( )

2
=0 2

/
m

m j

j

X X  (41) 

where the vector X  is obtained by eqns (37) and (38),   is an error bound, m  is 

calculated times in present time interval, 
2

  represents a vector 2-norm. 

     In this paper, 3=10   is adopted. If eqn (41) is satisfied continually 3 times, 
computing will stop in the time interval considered, and step into next one. The 
order of expansion can be automatically adapted in present time step. 

5 Numerical examples 

To check the convergence of the proposed method, the root mean square (RMS) 
error is given by 

 2 2
, , ,

1 1

( ) /
N N

numerical i exact i exact i
i i

RMS T T T
 

    (42) 

where ,numerical iT  and ,exact iT  are the numerical solution and the exact solution of 

the i-th node, respectively. For comparison, examples are also computed using 
the RIBEM, which use the finite difference technique to simulate the derivative 
of temperature with respect to time (it will be abbreviated to RIBEM-FD). 
RIBEM-FD was described in detail in the literature [12] where the Euler factor 
equals one. Finally, a concave geometry is discussed. 
 

Example 1: Consider a square plate 2=[0, ]  with 1k c   . The plate is 

discretized into 32 equally space linear boundary elements and distributed 
uniformly 49 internal nodes. The heat source is   1 2, sin sintf t ex x x , the 

initial condition is 0 1 2= sin sinT x x  and the boundary condition is ( ) 0T   . 

The exact solution of the temperature field can be expressed as 

  1 2, sin sintT t ex x x . 

     Fig. 1 shows the RMS errors of the temperature for the RIBEM-PTI and the 
RIBEM-FD. The results indicate that the present approach can effectively solve 
the problem with the heat source and can obtain more stable and accurate results 
than the RIBEM-FD. 
 

Example 2: Consider a square plate 2=[1,2]  with 1 2( )k  x x x , = 1c  . 
The plate is discretized into 20 equally space linear boundary elements and 
distributed uniformly 16 internal nodes. The heat source is 

1 2( , ) 6( ) 2f t t   x x x  and the initial condition is 2 2
0 1 2( ) ( )T  x x . The 

boundary conditions are 2 2
1 1( ,1, ) ( ) 1T t t  x x , 2 2

2 2(2, , ) 4 ( )T t t  x x , 
2 2

1 1( , 2, ) ( ) 4T t t  x x and 2 2
2 2(1, , ) 1 ( )T t t  x x . The exact solution of the 

temperature field can be expressed as 2 2 2
1 2( , ) ( ) ( )T t t  x x x . 

     Fig. 2 shows the RMS errors of the temperature for the RIBEM-PTI and the 
RIBEM-FD. The results indicate that the present approach can effectively solve 
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the problem with the varying heat conductivity and can obtain more stable and 
accurate results than the RIBEM-FD, even though more refined time steps are 
used in the RIBEM-FD. 
 

 

Figure 1: RMS error of temperature for Example 1. 

 

Figure 2: RMS error of temperature for Example 2. 
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6 Conclusions 

In this paper, the precise time integration algorithm is introduced to the radial 
integration BEM for solving the transient heat conduction problems with varying 
heat conductivity. For the RIBEM-FD, the sensitive results are caused by the 
finite difference method to solve the derivative of temperature with respect to 
time. The RIBEM-PTI can perfectly be used to solve the problem by expanding 
variables in the time interval. Numerical results show that the RIBEM-PTI can 
obtain satisfactory results and inherit merits of the RIBEM. Moreover, the 
RIBEM-PTI can obtain the relatively stable and accurate results for a big time 
step, the RIBEM-FD can obtain accurate results only in the case of a small time 
step. 
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