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Abstract 

This paper presents a new method of fundamental solution (MFS) for solving the 
scattering of elastic waves in layered half space. Based on dynamic Green’s 
function in layered half space, the proposed method can efficiently and 
accurately solve three-dimensional wave motion in a layered medium. Numerical 
results indicate that the amplification effects of elastic waves in a layered basin is 
more significant than that in a homogeneous basin, thus it is necessary to 
consider the bedding structure of the alluvial basin for seismic wave modelling 
in reality. 
Keywords: scattering of elastic waves, three-dimensional layered half space, the 
method of fundamental solution (MFS), alluvial basin. 

1 Introduction 

The scattering of elastic waves is a hot topic in many fields, which are widely 
used in earthquake (blast) wave analysis, geophysical prospecting, non-
destructive testing and so on. Generally speaking, theoretical analysis methods 
can be divided into analytical method and numerical method, and the later 
includes the domain discrete numerical methods such as the finite element 
method, finite difference method and the boundary- discrete methods. While the 
boundary-discrete methods include the method of fundamental solution (MFS), 
the discrete wave number method, the boundary element method and other 
similar methods. Among them, the MFS, also referred to superposition method, 
general inverse method, the virtual boundary element method or wave source 
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method, is essentially a special indirect boundary integral equation method. The 
MFS solves wave motions in the following way: virtual wave sources, by which 
scattered waves are constructed, are placed close to the boundaries of scatterers, 
and magnitudes of the virtual wave sources are determined by the boundary 
conditions. Compared with the BEM, this method has several advantages such as 
avoiding dealing with the singularity of the fundamental solution, and the 
meshless feature. Due to its excellent numerical accuracy and ease of 
implementing, it has been widely applied in the field of diffraction of elastic 
waves in elastic medium [1–4]. More related papers can be found in the survey 
articles [5–6]. 
     In the field of civil and earthquake engineering, the horizontal multi-layered 
half space is a reasonable and convenient approximation of the earth in reality. 
For solving the scattering of elastic waves in layered half space, the MFS is 
implemented based on dynamic Green’s function in layered half space. 
Compared to the whole-space Green’s function, this Green’s function is 
complicated in calculation, but avoids the discretization of the free surface and 
layer interfaces, which can greatly reduce the equation size and the 
computational storage. Based on the MFS, the procedure for solving elastic 
waves scattering in layered half space is presented in this paper. Then, the 
proposed method is utilized to solve the scattering of elastic waves by the three-
dimensional basin, in layered medium, and finally some important conclusions 
are obtained. 

2 The MFS for three-dimensional scattering in layered half 
space 

As shown in Figure 1, the scatterers such as basin, inclusion are contained in 
layered half space. Assuming each layer is filled with a homogeneous and 
isotropic medium, and plane waves incident from the bedrock half space. Firstly, 
the total wave field is divided into the free field and the scattered waves field. 
Then according to the single layer potential theory, scattered waves are  
 

 

Figure 1: Scattering of elastic waves by heterogeneous body in layered half 
space. 
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constructed by virtual wave sources placed close to the boundary of the scatterer, 
and the displacements and stresses of the scattered wave field can be expressed 
as 

 

,(x)= (x, ) ( ) ( , , , )i j

S

u iju ds i j x y zg      (1) 

 ,(x)= (x, ) ( ) ( , , , )i j

S

t ijt ds i j x y zg    
 

 (2) 

where S and 'S  are the boundary of the scatterer and the virtual sources surface, 
respectively; x , ';S S  ( )j   are amplitudes for the virtual force acted in j

direction located at  . , (x, )u ijg  and , (x, )t ijg   are the Green’s functions for 

displacement and traction in i direction due to the application of a unit force in j 
direction at point   respectively in layered half space.  

     For the actual problem, the above integral equations should be solved by 
numerical discretization according to the free or continue boundary conditions of 
the problem. Note that for the scattered waves in inclusion or sedimentary basin, 
virtual forces should be placed outside the scatterers. For convenience, the shape 
of virtual source surface is assumed identical to that of the boundary of the 
scatterers.  
     Generally speaking, singularity appears if wave sources are acted on the 
scatterer surface. In this study, the singularity is avoided as the wave sources are 
located at the virtual surface S1 (close to but not on the boundary S). However, as 
one disadvantage of MFS, the auxiliary surface needs to be placed at appropriate 
location, and the optimal distance between the auxiliary surface and the real 
boundary surface mainly depends on the incident frequency and is usually 
determined by numerical experience. Numerical experiments show that for 
incident frequencies  ≤2.0 ( is the dimensionless frequency defined later) the 
wave sources should better be placed at the positions within 0.4–0.6 times of the 
relevant radii of the scatterer, and the number of the wave sources can 
approximately take half of that of discrete points of cavity boundary; for higher 
incident frequency ＞2.0 the wave sources should be placed within 0.7–0.9 
times of the relevant radii of the scatterer, and the number of the wave sources 
can approximately take 0.8 times of that of discrete points of boundary. While 
considering the dynamic stress concentration in the corner of some kind of 
scatterers, the local refinement is suggested to obtain more accurate stress 
results.  
     The elastic wave scattering in three dimensional layered half space can be 
solved with the MFS by utilizing the following steps: 
(1) the boundary points collocation: due to the dynamic Green’s function for 
layered half space employed as the fundamental solution, there is no need to 
discretize the free surface and layer interfaces, the collocation points are only 
required at the scatterer surfaces.  
(2) the free field calculation: in the absence of scatterers, the dynamic response 
of layered half space should be solved under the incident waves, and the surface 
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displacement and stress response on collocation points at scatterer boundary 
should be calculate for the equation construction. 
(3) the scattered wave field construction: virtual source surface is placed near the 
scatterer surface, and the dynamic response in the medium can be constructed by 
superposition of all the virtual forces distributed on the virtual source surface. 
This process is known as dynamic Green function calculation. 
(4) boundary equation solution and wave fields superposition: based on the result 
of above steps, according to the boundary conditions, numerical equation can be 
constructed and solved. Once the virtual forces density is obtained, the total field 
response can be obtained by superposition of free field and the scatted wave 
field. 

2.1 Calculation of Green’s function for layered half space 

Consider a concentrated force embedded in layered half space, the dynamic 
response at arbitrary position can be solved by the method of direct stiffness 
matrix, which needs to introduce virtual surface on the loading surface, then the 
loaded layer is divided into two sub-layers. When the MFS or other boundary 
integral methods is used to solve practical problems, the Green functions of a 
large number of force sources at different locations are needed, then the stiffness 
matrix calculation should be updated in every time calculation of green 
functions, making the processing more complicated and adding large amount of 
calculation. In addition, when the load and the receiving points are at the same or 
close horizons, due to the high oscillation of Bessel function, integral function 
converges quite slowly. Therefore, a modified stiffness matrix method is 
proposed herein to overcome these problems, which makes the progress very 
convenient, in the meanwhile it will greatly reduce the amount of calculation in 
boundary element calculation for three-dimensional wave motion in layered half 
space. 
     The process of the green function calculation is shown in figure 2. Firstly, by 
means of Hankel transform and the Fourier transform in wave number domain, 
the dynamic stiffness matrix of each layer is calculated, then the global stiffness 
matrix is obtained by assembling each layer stiffness matrix, which is similar to 
the finite element method, and the difference only lies in that the layer stiffness 
matrix is derived analytically and is completely accurate. Secondly, the up and 
bottom surfaces of loaded layer are fixed,  then the reaction forces at two “fixed 
ends” should be calculated in the wave number domain (fig. 2(b)). The reaction 
forces can be obtained by superposition of the particular solution and 
homogeneous solution. Thirdly, the reaction forces at two “fixed ends” are 
relaxed, then the direct stiffness matrix method is employed to obtain the 
displacement at layer interfaces (fig. 2(c)). The dynamic response within each 
layer can be obtained through the transformation matrix. The dynamic response 
within the loaded layer should be obtained by additional superposition of the 
”fixed layer” solution. The detailed solving process is shown in paper [7]. 
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(a) (b) (c) 

Figure 2: The solution of green function of harmonic concentrated force 
source by direct stiffness method 

2.2 Solution 

Because the Green’s functions for layered half space are employed, the boundary 
conditions at the surface of the half-space and layer interfaces have already been 
satisfied, and only the boundary conditions at the surface of the scatterer need to 
be considered. Taking the 3-D alluvial basin as an example, to obtain the 
numerical solution, define the number of the collocation points on boundary and 
that of the wave sources inside the basin are N and N1 (N≥N1) respectively, then 
the displacement and stress of the scattered field outside the basin can be written 
as 

 

N1
s ( ) ( ) ( )

1 ,1 1 1 ,2 1 1 ,3 1
n1=1

( ) ( , ) ( , ) ( , )s s s
i n n i n n n i n n n i n nu x b G x x c G x x d G x x  

 
(3a) 

 
N1

s ( ) ( ) ( )
1 ,1 1 1 ,2 1 1 ,3 1

n1=1

( ) ( , ) ( , ) ( , )s s s
ij n n ij n n n ij n n n ij n nx b T x x c T x x d T x x   

 
(3b) 

1 1 1, ; 1, , ; 1 1, , ;n nx S x S n N n N      

     In which, bn1, cn1 and dn1 are the amplitude of the concentrate forces acted in 
x, y and z directions at n1th source, respectively. 
     As for the scattered wave field inside the alluvial basin, the virtual source 
surface 2S should be located outside the basin and can be discretized in the same 

manner. Then according to the continue boundary conditions at the interface 
between the alluvial basin and half space, the following equations can be 
obtained 

 1 1 2 2=H Y F H Y   (4) 

In which, 11 (6 ,3 )H N N , 22 (6 ,3 )H N N  are influence matrix which correspond to the 

displacement and stress due to virtual wave sources on surfaces 1S  and 2S , 

respectively. 11(3 ,1),Y N 22 (3 ,1)Y N  are unknown density vector. (3 ,1)F N  is the 

displacement and stress vector of the free field. The equation can be solved by 
using least-square method or pseudo-inverse method. Once the unknown wave 
source density is determined, the whole wave field will be obtained through the 
superposition of the scattered wave field and the free field. 
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3 Verifications 

To verify the numerical precision of the method, figure 3 shows the surface 
displacement amplitudes around a hemisphere basin with radius a in 
homogeneous half-space compared with the results of Mossessian and Dravinski 
[3]. The parameters for the half-space are as follows: Poisson’s ratio 1/3, 
damping ratio 0.005, dimensionless frequency   / sa c  =0.5, oblique 

incident plane P and SV waves with  (  ) =60º. It is shown that the results of 

the present study agree well with those of Mossessian and Dravinski [3]. 
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a. plane P waves incident ( 060  ) (x=0) b. plane SV waves incident  

( 060  )(x=0) 

Figure 3: The surface displacement amplitudes of a hemisphere alluvial basin 
in homogeneous half-space for P and SV waves incident compared 
with the results of Mossessian and Dravinski. 
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(a) vertical profile of a layered 
hemisphere alluvial basin [8] 

(b) comparison of the displacement 
amplitude 

Figure 4: The surface displacement amplitudes of a layered hemisphere 
alluvial basin for P waves incident compared with the results of 
Chailat et al. [8]. 

     For a layered medium, figure 4 shows the surface displacement amplitudes of 
a hemisphere layered basin with radius a in half-space compared with the results 
in Chaillat The parameters for the half-space are as follows: 
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Poisson’s ratio 0.25,R   2 0.3,   1 0.34,   damping ratio 0.001 

dimensionless frequency / =1.732sa c    density ratio 1 2 2/ / R      

0.6, shear modular ratio 1 2 2/ / 0.3,R      alluvial layer thickness 1 / 0.586,h H   

vertical incidence of plane P and SV waves. It is shown that the results of the 
present  study  agree  well  with  those of Chaillat  Note that the 
green function for whole space is used by them, requiring the elements 
discretization on layer interfaces and the free surface, which has a high demand 
on the storage capacity and computing ability of the computer for multi-layered 
medium. 

4 Numerical example 

In this part, the MFS is applied to study the scattering of seismic waves in a 
layered alluvial basin, and some important scattering phenomena of this model 
are discussed. Figures 5 and 6 illustrate the surface displacement amplitude  
 
 

 

 
o

x p α 1U |/|A | (η=2.0,θ =90 ,h /H=0.0)  o
p α 1U |/|A | (η=2.0,θ =90 ,h /H=0.0)y

      o
p α 1U|/|A | (η=2.0,θ =90 ,h /H=0.0)z

 

 

Figure 5: The contour of displacement amplitude around a layered 
hemispherical alluvial basin for P waves incident (h1/H=0.5, 0.1, 
0.0， = 2.0). 
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around a hemisphere two-layered basin with radius a embedded in half-space. 
The parameters are as follows: Poisson’s ratio 0.25R  , 2 0.3  , 1 0.34  , 

damping ratio 0.001, density ratio 1 2 2/ / R     =2/3, shear modular ratio 

1 2 2/ / 1/ 6R     , the ratio between the thickness of the upper layer and that 

of the total depth of the basin h1/H=0.5, 0.1, 0.0, dimensionless frequency  

/ sa c  =2.0, incident angle  (  )=90º. 
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Figure 6: The contour of displacement amplitude around a layered 
hemispherical alluvial basin for SV waves incident (h1/H=0.5, 0.1, 
0.0， = 2.0). 

     From these figures, significant amplification effects can be seen clearly both 
in the centre and the edge of basin due to the focusing of seismic waves and the 
surface wave transformation. Consider the change of the thickness of the upper 
layer, it is shown that there is a large difference between the scattering 
phenomenon of the two-layered basin and the homogenous basin (h1/H=0.0), 
and the amplification effect seems more pronounced, and the displacement 
amplitude oscillates more rapidly in space in the former case. For example, the 
maximum displacement amplitudes of the layered basin reach 18.7 and 36.1 for 
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P and SV waves incident vertically respectively, about 2.3 and 3.5 times that of 
the homogenous basin. It may be explained that the seismic waves are multiple- 
reflected between the upper and bottom surface of the near surface soft layer and 
seismic energy are mainly trapped in this layer. Correspondingly, the thickness 
of the upper layer greatly influences the reflection and superposition of waves. 
Hence, the accurate modelling of the seismic response of alluvial basin requires 
more detailed geological exploration data. 

5 Conclusions 

(1) This paper presents the method of fundamental solution (MFS) for solving 
the scattering of elastic waves around three-dimensional scatterers, based on 
dynamic Green’s function in layered half space. It is illustrated that the three-
dimensional wave motion in layered medium can be efficiently and accurately 
solved by the proposed method. In addition, the MFS is a meshless method, 
which only needs a few of collocation points on the scatterer surface, so it can be 
implemented fairly conveniently. 
 

(2) Numerical results illustrate that the scattering of seismic waves by three-
dimensional layered sedimentary basin is significantly different from that of the 
homogenous basin, and the wave energy can be largely trapped in the near 
surface soft layer. It is necessary to consider the bedding structure of the alluvial 
basin for seismic wave modelling in reality. 
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