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Abstract   

A singular time-domain boundary element method for transient elastodynamic 
crack analysis in two-dimensional piezoelectric solids is presented in this paper. 
A finite straight crack in infinite piezoelectric solids under impacted loading is 
investigated. A convolution quadrature formula is applied for temporal 
discretization, while the Gauss-Chebyshev method is adopted for the spatial 
integration. By use of Laplace transform, time domain Green’s functions for the 
infinite plane are split into singular plus regular terms, the singular ones 
coinciding with the static Green’s function. Numerical examples are presented to 
show the accuracy of this method, and then the contribution of the piezoelectric 
effect on the variation of dynamic stress intensity factors is discussed. 
Keywords :   piezoelectric solids, dynamic crack analysis, dynamic intensity 
factors. 

1 Introduction  

Due to coupling effects between the mechanical and the electrical fields, 
piezoelectric materials are widely applied in transducers, actuators, and many 
other smart devices and structures. Dynamic crack analysis in piezoelectric 
solids is an important issue in fracture and damage mechanics as well as 
nondestructive testing. It is very useful to characterize and evaluate the 
mechanical and the electrical integrity, the reliability and the durability of 
piezoelectric devices and structures. As to the complexity of the corresponding 
initial-boundary value problems, many numerical methods have been applied. 
Enderlein [1] and Enderlein et al.. [2] have applied the finite element method for 
2-D dynamic crack analysis in piezoelectric solids. Dziatkiewicz and Fedelinski 
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[3], Gaul et al. [4] have developed dual reciprocity BEM to avoid the difficulty 
to get Green’s functions. Time-domain BEM for transient dynamic crack 
analysis in piezoelectric solids has been present in [5–9]. Meshless methods 
for piezoelectric solids have been implemented by Liu et al. [10] and Sladek 
et al.. [11]. 
     For temporal discretization, the quadrature formula of Lubich [12, 13] is 
adopted for approximating the Riemann convolution integrals. For spatial 
integral, Gauss-Chebyshev method is implemented. A special feature of present 
time-domain BEM is that it requires only Laplace-domain instead of time-
domain dynamic piezoelectric fundamental functions. Cauchy principal 
boundary integrals arising in the present time-domain BEM are computed by 
using Gauss-Chebyshev method. A basic function is multiplied, to describe the 
local behavior of the displacement density functions properly. 

2 Basic equations 

A homogenous and linear piezoelectric solid containing a finite crack is 
considered. In the absence of body forces and under the quasi-electric 
assumption, the cracked solid satisfies the equations of motion and the Gauss’s 
law [14] 

 , ,ij j iu    (1)
 

 , 0i iD =  (2) 

where iu and ij represent the displacement and the stress components,  is the 

mass density, and iD denotes the electric displacements, a comma represents 

spatial derivatives, and superscript denote temporal derivatives. The piezoelectric 
solid satisfies the following constitutive equations 

 ,ij ijkl k l ijk kc u e Es = -   (3) 

 ,i kli k l ik kD e u Ee= +   (4) 

in which ijklc is elasticity tensor, ijke is the piezoelectric tensor, ik is the 

dielectric permittivity tensor, and kE represents the components of electrical 

field. Under quasi-electrostatic assumption, the electrical field components kE  

and the electrical potential   are related by  
 ,k kE f=-  (5) 

     For convenience, the generalized displacements, the generalized stresses, and 
the generalized elasticity tensor are introduced as follows 
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     Thus, the equations of motion and constitutive equations can be rewritten as 

 ,iJ i JK KUrd*S =   (9) 

 ,iJ iJKl K lC US =  (10) 

     In Eq. (9), JKd*  is the generalized Kronecker delta defined by 

 
, , 1,2

0, otherwise
JK

JK

J K
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 


  (11) 

3 Integral equations 

An infinite piezoelectric solid containing a finite crack as shown in Fig. 1 is 
considered, that the length of crack is 2a and axis x2 is parallel with polarization 
direction. 

 

Figure 1: A straight crack under impact mechanical loading. 

     Initial conditions and boundary conditions are assumed 

 (x, ) (x, ) 0, for t=0,I IU t U t= =  (12) 
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 *(x, ) (x) ( ), for x ,I I CP t P H t   (13) 

where the *(x)IP  represents the amplitude of the impact loading, ( )H t  denotes 

the Heaviside step function. 
     By using the generalized Betti–Rayleigh reciprocity theorem, the formula for 
the extended displacements can be obtained 

 y(x, ) (x, y, ) (y, )d ,
c

G
J IJ IU t T t U t


      (14) 

where (x, y, )G
IJT t are traction fundamental solutions, x  and y  represent the 

source and the observation points, asterisk ‘* ’ denotes the Riemann 
convolution. By substituting the Eq. (12) into the constitutive relations Eq. (4), 

taking the limit process x
C  , and considering the boundary conditions 

Eq. (13), time domain traction BIEs can be obtained 

 y

(x, y, )
f .p. (x) (y, )d (x, )

c

G
KM

i iJKl M J
l

T t
n C U t P t

x


   

   (15) 

where f .p. denotes the hypersingular Hadamard finite-part integral, and 

generalized displacement discontinuous functions  (y, )MU t are defined by 

 (y, ) (y , ) (y , )M M MC C
U t U t U t     .  (16) 

     Using the relations 

 
1 1
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and integration by parts, the hypersingular traction integral Equations (15) can be 
degenerated into Cauchy integral equations 
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where 1(y, ) (y, )M Mf t U t y    is the basic unknown function, and 

1 (x, y, )G
KM t  is defined 

 1 ( ) (1,0)(x, y, ) (x, y, ) .G G
KM IJ n yt T t    (20) 
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4 Temporal and spatial procedure 

4.1 Time discretization 

To solve the Riemann convolution, the convolution quadrature formula of 
Lubich [12, 13] is applied for temporal discretization. As the convolution 
quadrature formula of Lubich, the integral equations (19) are turned into 

y
0 1

(y, ( ) )
(x) ( , , ) d (x, )

c

M
M

i J
m

U M m t
n x y m t P M t

y





  
    




 (21) 

where the time t is divided into M equal time-steps t , and the weights 
( , , )x y m t   are determined by 
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in which T̂ , ̂ , Û  are Laplace transform of the function T ,  , U , and 

        
2

1/ 22 /

1
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/ , , ,
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j

q Qi q Q
q q q q

j

s t re r


     

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       (23) 

with   being the numerical error in computing the Laplace transform.  

4.2 Spatial approximate 

Time-domain and Laplace-domain dynamic fundamental solutions for 
homogenous and linear piezoelectric solids have been derived in [15, 16]. 
Unfortunately, they cannot be given in closed forms, but they can be represented 
by line-integrals over a unit-circle in 2-D case. Though time-domain BEM 
formulation presented in this paper, only the Laplace-domain fundamental 
solutions are needed in temporal discretization. Note here that the tractions BIEs 
are Cauchy singular and should be understood in sense of Cauchy-principal 
value integrals. 2-D Laplace-domain displacement fundamental solution can be 
expressed as [15, 16] 

     
2

2 21
1

1ˆ , , / d
8

m
IJ

IJ m
m m

U s s c S
c 


 



  x y η y x   (24) 

where m
IJ  and 2

mc  are determined by wave propagation vector 
 

 1 2, η  

and material constants, and s is the Laplace-transform parameter. The function 

( )zY  is defined by 

   [ Ei[ ] Ei( )]z zz e z e z       (25) 
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with Ei[ ]z  being the exponential integral and z a complex variable. The function 

 z  has a logarithmic singularity when integration is taken over the 

collocation point.  
     The displacement fundamental solution can be decomposed into regular and 
singular static parts as 

      ˆ ˆ ˆ, , , , ,R S
IJ IJ IJU s U s U x y x y x y    (26) 

where the regular dynamic part is given by  
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   

2

2 21
1

1ˆ , , / d ,
8

, 2log

m
R RIJ
IJ m

m m

R

U s s c S
c

a b ab b




 



  

   
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  (27) 

while the singular static part has the following form 

     
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8
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     The static displacement fundamental solution can be reduced to an explicit 
form as [17] 

      
3

0

1

1ˆ , Re ln lnS
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where  

 0
1 2 1 2, , 1, 2,3M M M Mz y y z x x Mm m= + = + =   (30) 

are the counterpart of the collocation and the integration point, M , JMP  and 

MIQ are determined by material constants. 

     So, the corresponding traction fundamental solutions can be obtained as 
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where LJM is also determined by material constants. More details of fundamental 
solutions can be found in García-Sánchez et al. [9]. 
     By substituting Eqs (31)–(34) into Eqs (22), and after normalized the limits of 
integration, the problem can be rewritten as 

 

 

1

1
0
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, , ( ) ( , )d

, ,
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M MM
iJ iJ M

j

J
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 
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
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 
     

 

 
  (35) 

where M
iJ are determined by material constants,  , , ( )M

iJ N j t     are the 

regular parts of integral kernel. Dealing with the Cauchy integration, Gauss-
Chebyshev method is applied. The ( , )Mf tx  can be approximated by a series 

Chebyshev polynomial multiplied a weight function as 

  ( , ) ( ) , ,M Mf t w F t     (36) 

where ( )w   is the weight function, and the function ( , )MF t  are unknown 

bounded functions  
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     By using the relation of Chebyshev polynomial [18] 
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(2 1)
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     The integral Eqs (35) are turned into the following linear algebraic equations  

 
 

0 1

( , ) , , ( )

( , ) .

N n
M

M i M i k
j i i k

J k

F j t N j t
n

P N t

    
 


 

  
        

 

 
  (40) 

     To solve the equations, supplementary equations are needed. Duo to 
displacement discontinuous functions at the crack tip are zero, the supplementary 
equations are 

 
1 1

1 1
( , ) d ( , )d 0M MU j t f j t    

 
        (41) 

     Using the same scheme, the integral equations can be reduced as 

 
1

( , ) 0 .
n

M i
i

F j t
n

 


     (42) 

     Solving Eqs (40) and (42), the unknown functions ( , )M iF tx can be computed, 

then by interpolating, ( , )Mf tx  can be obtained. 
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4.3 Computation of dynamic intensity factors 

Since ( , )M iF j t   has been solved, the value of ( , )MF tx  at the crack tips can be 

approximated by Lagrange extrapolation. The generalized stress intensity factors 
K can be computed as 
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12 22
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Ⅰ

Ⅱ
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   (43) 

where M
ij are determined by material constants. 

5 Numerical examples 

5.1 Impact mechanical loading 

The intensity factors are normalized as 

  
( ) ( )

( ) , ,
st st

K t K t
K t K

K K
  Ⅰ Ⅳ
Ⅰ Ⅳ

Ⅰ Ⅰ

  (44) 

where I 0
stK a . 

     To examine this method’s accuracy, numerical calculations are carried out for 
piezoelectric material PZT-5H, whose constants are given in Table 1. The finite 
crack is subjected to an impact mechanical loading *

2 2(x, ) (x) ( )P t P H t . The 

numerical results for I ( )K t  and IV ( )K t  have been given in Figs 2 and 3 versus 

the time dimensionless time / ,Ttc a  where 66 / .Tc C   Comparing the results 

with that obtained by García-S nchez et al.  [6] a good agreement between both  
results is shown. 
 

Table 1:  Material properties used in this work. 

Cij(Mpa), eij(C/m2), εij(C/(GV m)), ρ(Kg/m3) 

 C11 C12 C22 C66 e21 e22 e16 ε11 ε22 ρ 

PZT-5H 126 84.1 117 23 -6.5 23.3 17.0 15.04 13.0 7500 

PZT-6B 168 60 163 27.1 -0.9 7.1 4.6 3.6 3.4 7600 

BaTiO3 150 66 146 44 -4.35 17.5 11.4 9.87 11.2 5800 
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Figure 2: Normalized mode-I stress intensity factor versus time for impact 
mechanical loading. 

 

Figure 3: Normalized electrical displacement intensity factor versus time for 
impact mechanical loading. 

5.2 Infuluence of piezoelectric effect 

As we know that the electric field doesn’t contribute to KI under static loading, 
but the electric field does contribute the changes over time of KI. In order to find 
out the influence of piezoelectric effect, numerical caculations are carried out for 
two different typical piezoelectric materials PZT-6B and BaTiO3. Firstly, we 
obtain the dynamic stress intensity KI of them. Then we let the piezoelectric 
tensor to be zero and obtain the KI as well, that means piezoelectric effect does 
not take into account in this case. Corresponding results for the normalized 
dynamic intensity factors are presented in Figs 4 and 5.  
     It shows that stress intensity factor KI is drastically affected by piezoelectric 
effect. Without considering the piezoelectric effect, I ( )K t is larger at the 

beginning, and reaches the maximun value earlier, but the peak value is much 
smaller. 
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Figure 4: Normalized mode-I stress intensity factor versus time for impact 
mechanical loading. 

 

Figure 5: Normalized mode-I stress intensity factor versus time for impact 
mechanical loading. 

6 Conclusions 

Transient dynamic crack analysis in two-dimensional, homogenous and linear 
piezoelectric solids is presented in this paper. A Cauchy singular time-domain 
traction BEM is developed for this purpose. By using Lubich quadrature 
formula, Laplace-domain instead of time-domain dynamic fundamental solutions 
are applied, which is much more stable. By using the properties of straight crack 
and relations of fundamental solutions, the hypersingular integral equations are 
converts to Cauchy singular equations. Then, the singular integrals are treated by 
Gauss-Chebyshev method. Since the weight functions fully reflect the crack 
front singularity, dynamic intensity factors can be computed directly from the 
Displacement Discontinuity density functions, which is very accurate and easy. 
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     Discussion on the influence of piezoelectric effect, the results presented here 
are useful to gain a better understanding of piezoelectric effect under impact 
loading conditions. It shows that in dealing with dynamic problems, piezoelectric 
effect must be considered, which has significant influence. 
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