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Abstract 

It is well known that BEM/BIEM results in degenerate scale for a two-
dimensional Laplace problem subjected to the Dirichlet boundary condition. In 
this paper, we reviewed three indexes for detecting the degenerate scale in 
BEM/BIEM and five regularization techniques to ensure the unique solution, the 
hypersingular formulation rank promotion by adding the boundary flux 
equilibrium, CHEEF method, (direct BEMs), Fichera’s method (indirect BEM) 
and method of adding a rigid body mode. In the numerical implementation, the 
BEM program developed by the NTOU/MSV group is employed to see the 
validity of the above formulation. Finally, a general shape of a regular triangle is 
numerically implemented to check the uniqueness solution of BEM. 
Keywords: BEM, BIEM, degenerate scale, ill-conditioned. 

1 Introduction 

While the boundary integral equation method (BIEM) or the boundary element 
method (BEM) is used to solve engineering problems, rank deficiency or the 
non-unique solution occurs when the domain of the problem is a specific size. It 
is well known that BEM/BIEM results in a degenerate scale for a two-
dimensional interior Laplace problem subjected to the Dirichlet boundary 
condition [1]. There are many related terminologies such as Gamma contour [2], 
logarithmic capacity [3], critical value [4, 5], conformal radius [6], transfinite 
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diameter [7], Robin constant [8] and Chebichev constant [8]. Petrovsky [9] 
pointed out the paradox for the degenerate scale by using the maximum principle 
and the mean value theorem. Physically speaking, it is obvious and is physically 
realizable that symmetric loading cannot excite the anti-symmetric vibration 
mode. The reason is that no work can be done using the Betti’s law. We know 
that the BIE is derived from the Green’s third identity which is similar to the 
Betti’s law in the theory of structures. It is similar that a fundamental solution 
may contribute no work for a special domain with a degenerate scale. 
Mathematically speaking, the degenerate scale can be understood by the fact that 
there is a nontrivial boundary flux for the trivial boundary potential. One way to 
avoid this problem is by scaling. A simple case of a circle with radius 1 can be 
easily found from the literature [9]. Although scaling can avoid the appearance 
of degenerate scale in the original problem, the problem still exists and moves 
the critical situation to another size. In other words, the degenerate scale is not 
solved, and it is only shifted to a new scale. Therefore, searching an efficient 
method to solve the Dirichlet Laplace problem for all scales is not trivial. 
     Chen et al. also revisited this problem and they used the singular value 
decomposition technique [10] and the Combined Helmholtz Exterior integral 
Equation Formulation method (CHEEF) [10] to promote the rank in the 
boundary element method (BEM) and to obtain a unique solution. Recently, 
Chen and his coworkers analytically derived the degenerate scales of a circle 
[11], an elliptical case [12], a regular N-gon [13] and a semi-circular disc [14] 
through the unit logarithmic capacity by using the complex variable and 
numerically examined by using the BEM program. Kuo and Chen [15] linked the 
unit logarithmic capacity in the theory of complex variables and the degenerate 
scale in the BEM/BIEMs. It is known that the degenerate scale happens when the 
logarithmic capacity is equal to 1. This is a good index to judge where the 
degenerate scale occurs. Recently, Han et al. [17] provide another index to see 
the occurrence of the degenerate scale. Based on Fichera’s method [18] which 
was first provided by Fichera in 1961 [19], the method was developed by using 
the integral equation of first kind by adding a constant in the equation. Besides, it 
is also necessary to satisfy an extra constraint. Therefore, they provided a 
computable index with respect to the constant to judge where the degenerate 
scale happens. 
     In this paper, we reviewed three indexes for detecting the degenerate scale in 
BEM/BIEM and five regularization techniques to ensure the unique solution. 
Finally, a general shape of a regular triangle is numerically implemented to 
check the uniqueness solution of BEM. 

2 Three detecting indexes for the degenerate scale in the 
BEM/BIEM 

The governing equation and boundary condition of the interior and exterior 
Laplace problem subject to the Dirichlet boundary condition are shown below:  
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where 2 ,  iD , oD  and B  are the Laplacian operator, the interior bounded 

domain, the exterior domain and the boundary, respectively. Single-layer 
representation for the solution yields the integral equations of the first kind as 
given below: 

( , ) ( ) ( ) ( ),
B

U dB f B   s x s s x x , (3)

where the fundamental solution ( , ) ln .U  s x x s  In some case such as 

the degenerate scale, we cannot obtain the solutions due to incompleteness 
for the representation of the solution by loss of a constant. Chen et al. [10] 
employed the SVD technique to find the ill-conditioned system due to the 
degenerate scale in the BEM. The influence matrix [ ]U  in the SVD structure is 

shown below: 

       TN N N N N N N N
U

   
    , (4)

where  N N
  is a diagonal matrix and  

 
1
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N

0 0 0

0 0 0

0 0

N N

N N





 
   
 
 

 

   


. (5)

     If the size is the degenerate scale such that   0U  , 1  in the diagonal 

matrix of eqn. (5) is equate to zero. The minimum singular value to be zero is the 
first index to detect the degenerate scale in BEM. 
     Kuo and Chen [15] designed a null field of the degenerate scale to have a 
constant field for the interior domain, iD . They transformed the real-variable 

BIE to the complex-variable BIE and let  
( ) ( ) ( )G z u iv x x  (6)

and 
( ) ,  ,

( ) ( ) , ,
i I i

o I

u C D

u f C B

 
   

x x

x x x
 (7)

where IC  is a constant. Considering the Riemann conformal mapping from the 

exterior circle in the w plane to the exterior domain bounded by B  in the z 
plane, they have 
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* *
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     Then they employed the indirect BEM to obtain 
 

 
   

1

1

Re{ } ln ,
Re{ ( )} ( , )

Re{ } Re{ln } ln ,

i i
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
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, (10)

 
where the subscripts of i and o denote the inner and outer domains of iD  and 

oD . The above equation indicates that the unit leading coefficient 1( 1)a   of 

the linear term in the Riemann conformal mapping of eqn. (8) results in an 
interior null field which matches well the BEM result once the degenerate scale 
happens. The leading coefficient of a1 is the second index in the theory of 
complex variables.  
     Recently, Han et al. [17] employed Firchera’s technique to introduce a 
computable index    for verifying the degenerate scale. To avoid the ill-

conditioned matrix of conventional indirect BEM, Fichera [18] proposed the 
boundary integral formulation as shown below: 
 

( , ) ( ) ( ) ( ),
B

U dB f B    s x s s x x  (11)

 
and a constraint equation 
 

( ) ( ) 0
B

dB  s s , (12)

 
where ( ) s  and   are the unknown boundary density and an unknown real 

constant, respectively. Han mark the boundary condition as 
 

( ) ( , ) ( ),
B

f U dB B x s x s x  (13)

then  

1
( , ) ( , ) ( )

( ) B B B B

U dB dB U dB dB
meas B

  

     
  
   s x s xs x s x s , (14)

where  

( ) 1
B

meas B dB  s . (15)

 
 www.witpress.com, ISSN 1743-355X (on-line) 
WIT Transactions on Modelling and Simulation, Vol 56, © 2013 WIT Press

194  Boundary Elements and Other Mesh Reduction Methods XXXVI



     If the size is the degenerate scale then    of eqn. (14) is equate to zero. The 

third index    is derived from Fichera’s approach. 

3 Five regularization techniques  

Following the successful experiences of Chen et al. [19], we review and 
analytically derive the unique solution by using five regularization techniques 
(three techniques for the direct BEM, one technique for the indirect BEM and 
one modified technique for the kernel function) as shown in Table 1. For the 
analytical study, they employed the degenerate kernel in the polar and elliptic 
coordinates to derive the unique solution by using five regularization techniques 
for any size of circle and ellipse, respectively.  

Table 1:  Five regularization techniques for nonuniqueness in the BEM 
/BIEM. 

Method Integral formulation Extra constraint 

Fichera’s method  ( , ) ( ) ( ) ( ),
B

U dB f B    s x s s x x ( ) ( ) 0
B

dB  s s  

The boundary flux 
equilibrium 

2 ( ) ( , ) ( ) ( )

( , ) ( ) ( ),

B

B

u T u dB

U t dB D

 

 





x s x s s

s x s s x

( ) ( ) 0
B

t dB  s s  

The CHEEF method  

0 ( , ) ( ) ( )

( , ) ( ) ( ),

B

c

B

T u dB

U t dB D



 





s x s s

s x s s x
 

The hypersingular 
formulation 

2 ( ) ( , ) ( ) ( )

( , ) ( ) ( ),

B

B

t M u dB

L t dB D

 

 





x s x s s

s x s s x
 

The method of adding a 
rigid body mode 

( , ) lnU r  s x  

3.1 Three regularization techniques for the direct BEM 

By using the singular formulation, we have the boundary integral equation,  

2 ( ) ( , ) ( ) ( ) ( , ) ( ) ( ),
B B

u T u dB U t dB D    x s x s s s x s s x , (16)

where 
( , )

( , )
U

T
n




 s

s x
s x  and 

( )
( )

u
t

n




 s

s
s . Therefore, the null-field integral 

equation yields 

0 ( , ) ( ) ( ) ( , ) ( ) ( ), c

B B

T u dB U t dB D   s x s s s x s s x , (17)

where cD  is the complementary domain. By setting the field point ( , )  x xx  

and the source point ( , )  s ss , the fundamental solution by using the elliptic 

coordinates can be expressed by using the following degenerate kernel for the 
elliptic case, 
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where    2 2
sinh cos cosh sinJ c     s s s s s . According to the boundary 

flux equilibrium, we have the constraint equation as shown below: 

( ) ( ) 0
B

t dB  s s , (20)

where dB J d s s . Since the unknown boundary density ( )t s  and the given 

boundary condition ( )f x  can be expanded by using the Fourier representation 

for a circular case, we have 

0
1 1

1
( ) cos( ) sin( ) , 0 2n n

n n

t a a n b n
J
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where na  and nb  are unknown coefficients but np  and nq  are given from the 

Dirichlet boundary condition. The boundary flux equilibrium of eqn. (20) yields 
2

0
1 10

( ) ( ) cos( ) sin( ) 0n n
n nB
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     The above equation can determine the unknown constant term 0 0a  . By 

substituting the degenerate kernel into the fundamental solution of eqn. (17), we 
have 

   

       

0 0

0 0
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1 1

0 0
1 1
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 (24) 
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where 0  is the radial coordinate of the elliptic boundary. Therefore, all the 

unknown coefficients are uniquely determined as follows: 

 
 

0

0

0

0,

tanh ,

coth .

n n
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a

a n n p

b n n q





 



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 (25) 

     For the elliptic case, eqn. (17) alone yields the non-unique solution of 0a . 

Instead of adding the boundary flux equilibrium, we can resort the null-field 
integral equation by collocating the point ex  outside the domain (CHEEF idea) 

to add an independent constraint. For the elliptic case, we collocate the 
exterior point         cosh cos , sinh sin ,e e e e ec c   x  where 0.e   By 

substituting the degenerate kernel and ex  into the fundamental solution of 

eqn. (17), we have  
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     According to eqn. (24) and one constraint of eqn. (26), all the unknown 
coefficients are uniquely obtained as follows: 
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     By using the hypersingular formulation, we have the boundary integral 
equation,  
 

2 ( ) ( , ) ( ) ( ) ( , ) ( ) ( ),
B B
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0 ( , ) ( ) ( ) ( , ) ( ) ( ), c

B B

M u dB L t dB D   s x s s s x s s x . (29) 

 
     For the circular case, ( , )L s x  and ( , )M s x  can be expressed by using the 

following degenerate kernels, respectively, 
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     By substituting the degenerate kernel into the fundamental solution of 
eqn. (29), we have 
 

   

       

0 0

0 0

0 0
1 1

0 0 0
1 1

1
2 sinh cos( ) 2 cosh sin( )

2 1
2 cosh cos 2 sinh sin ,

0 2 .

n n
n n

n n

n n
n n

n n

p n e n n q n e n n
J

a a e n n b e n n
J J

 

 

     

      

 

 
 

 

 
 

 

 

 
  

 
 

 

 

x x
x

x x
x x

x

 (32) 

 
      Therefore, all the unknown coefficients according to the hypersingular 
equation are uniquely obtained as follows: 

 
 

0

0

0

0,

tanh ,

coth .

n n

n n

a

a n n p

b n n q





 



 

 (33) 

3.2 Regularization technique for indirect method 

Single-layer representation for the solution yields the integral equations of the 
first kind as given below: 
 

( , ) ( ) ( ) ( ),
B

U dB f B   s x s s x x . (34) 
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     To avoid the ill-conditioned matrix in eqn. (34), Fichera proposed the 
boundary integral formulation as shown below: 
 

( , ) ( ) ( ) ( ),
B

U dB f B    s x s s x x  (35) 

and a constraint equation 

( ) ( ) 0
B

dB  s s . (36) 

     The above equation can directly determine the unknown constant term 

0 0a  . By substituting the degenerate kernel into the fundamental solution of 

eqn. (35), we have 
 

       0 0

1 1

0
1 1

2 2
cosh cos sinh sin

cos( ) sin( ), 0 2 .

n n
n n

n n

n n
n n

a e n n b e n n
n n

p p n q n

      

   

 
 

 

 

 

  

    

 

 

x x x x

x x x

 (37) 

 

     Therefore, all the unknown coefficients are uniquely obtained as follows:  
 

 

 

0

0

0

0

0

0

,

0,

,
2 cosh

.
2 sinh

n nn

n nn

p

a

n
a p

e n

n
b q

e n







 

 






 
 






 (38) 

3.3 Modification of the kernel function 

Since the unknown constant term 0a  cannot be determined in the case of a 

degenerate scale, the fundamental solution in the direct BEM can be modified by 
adding a rigid body term   as follows: 

( , ) lnmU   s x x s . (39) 

     The modified fundamental solution by using the elliptic coordinates can be 
expressed by using the following degenerate kernel for an elliptic case 

 

     

     

     

     

1

1

1

1

2
ln cosh cos cos

2

2
sinh sin sin , ,

, ln
2

ln cosh cos cos
2

2
sinh sin sin , .

m

m

m

m
m

m

m

m

m

c
e m m m

m

e m m m
m

U
c

e m m m
m

e m m m
m









    

    


    

    





















   



     
   


  









s

s

x

x

s x x s

x x s s x

x s x s

s x s s x

x s x s
 

(40) 

     By substituting the degenerate kernels of eqns. (40) and (19) into the 
fundamental solution of eqn. (17), we have 
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   

       

0 0

0 0

0 0
1 1

0 0 0 0
1 1

2 sinh cos( ) 2 cosh sin( )

2 2
2 ln cosh cos sinh sin ,

2

0 2 .

n n
n n

n n

n n
n n

n n

p e n n q e n n

c
a a e n n b e n n

n n

 

 

     

       

 

 
 

 

 
 

 

  

     
 

 

 

 

x x

x x

x

 (41) 

     Therefore, all the unknown coefficients are uniquely obtained as follows: 

 
 

0

0

0

0,

tanh ,

coth .

n n

n n

a

a n n p

b n n q





 



 

 (42) 

     Similarly, we substitute the degenerate kernel of eqn. (40) into the 
fundamental solution of eqn. (34) to obtain  

       0 0
0 0 0 0

1 1

0
1 1

2 2
2 ln cosh cos sinh sin

2

cos( ) sin( ),0 2 .

n n
n n

n n

n n
n n

c
a a e n n b e n n

n n

p p n q n

        

   

 
 

 

 

 

      
 

   

 

 

x x

x x x

 
(43) 

 

      Therefore, all the unknown coefficients are uniquely obtained as follows: 
 

 

 

0

0

0 0

0

0

0

1

2 ln
2

,
2 cosh

.
2 sinh

n nn

n nn

a p
c

n
a p

e n

n
b q

e n





  

 

 





      
 

 


 



 (44) 

 

     It is noted that the original degenerate scale is avoided by adding a rigid body 
term but just move to another critical scale. 

4 Numerical results and discussions 

Here, we consider a regular triangle to examine the three detecting indexes and 
to see the validity of five regularization techniques to promote the linear 
algebraic system to be full rank. Singular values are not zeros for any scale size 
after regularization as shown in Table 1.  The five approaches except the method 
of adding a rigid body mode are valid for all sizes. The least method just moves 
the critical size to other size. For the general shape of a regular triangle, the 
degenerate scale appears when the side length is equal to 2.37105 which satisfies 
the analytical formula in [13]. Besides, three indexes 1 1, anda  are found to 

be effective in detecting the degenerate scale. Numerical results math well with 
analytical derivations as shown in Table 2.  
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5 Conclusions 

The ill-conditioned system due to the degenerate scale in the direct BEM and the 
indirect BEM for the Laplace equation subjected to the Dirichelet boundary 
condition was examined by using degenerate kernels for the elliptic domain in 
terms of the elliptic coordinates. Three indexes for detecting the degenerate scale 
were reviewed. Five regularization techniques were employed to transform the 
ill-conditioned system to a well-posed system. An example of a general shape of 
triangle was numerically implemented and analytically demonstrated to see why 
the ill-condition system occurs and how it can be transformed to be a well-posed 
system.  
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