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Abstract 

A novel method is presented for numerical evaluation of high-order singular 
boundary integrals that exist in the Cauchy principal value sense in two- and 
three-dimensional problems. In this method, three-dimensional boundary 
integrals are transformed into a line integral over the contour of the surface and a 
radial integral which contains singularities by using the radial integration 
method. The analytical elimination of singularities condensed in the radial 
integral formulas can be achieved by expressing the non-singular parts of the 
integration kernels as a series of cubic B-spline basis functions in the local 
distance  of the intrinsic coordinate system and using the intrinsic features of 
the radial integral. Some examples are provided to verify the correctness and 
robustness of the presented method.  
Keywords: singular integrals, boundary element method, radial integration 
method, Cauchy principal value, B-spline basis function. 

1 Introduction 

Once the boundary element method (BEM) [1, 2] is used to solve potential and 
mechanical problems, various orders of singular integrals appear in the basic 
boundary integral equations and their gradient computation equations [2]. The 
accurate evaluation of general high-order singular boundary integrals is very 
important and has obtained extensive research in recent years [3–8].  
     Recently, for evaluating arbitrarily high-order 2D and 3D singular boundary 
integrals in a unified way, Gao [9, 10] proposed an efficient approach by 
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expressing the non-singular part of a singular integrand and the global distance r 
as power series in the local distance  of the intrinsic coordinate system and then 
eliminating the singularities analytically. 
     In this paper, the global distance r is expressed as power series in , and the 
non-singular part of a singular integrand is expressed as a series of third-degree 
B-spline basis functions [11] in . One advantage of this method is that the 
coefficients calculation becomes much simpler because of the local support and 
the endpoint interpolatory properties of B-spline basis functions with open knot 
vectors [12] compared to coefficients calculation in reference [10]. For three-
dimensional boundary integrals, the radial integration method (RIM) [13, 14] is 
employed and the singularities condensed in the radial integral are removed 
analytically in the intrinsic coordinate system. A number of numerical examples 
will be given to verify the correctness and robustness of the presented method. 

2 B-spline basis functions 

Let U = muu ,...,0  be a nondecreasing sequence of real numbers, i.e., 

1,...,1,0,1   miuu ii . iu  are called knots, and U is the knot vector. The ith 

B-spline basis function of p-degree, denoted by  uN pi, , is defined as [11, 15]: 
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where i=0,1,…,n; m=n+p+1. If knots are equally-spaced in the parametric space, 
they are said to be uniform [11, 12]. A knot vector is said to be open if its first 
and last knots appear 1p  times. An initial example of the results of applying 

(1a) and (1b) to a uniform knot vector }6,5,4,3,2,1,0{U  is presented in figure 1. 
 

 

 

Figure 1: B-spine basis functions of order 0,1,2,3 for uniform knot vector U

= 6,5,4,3,2,1,0 . 

     It should be noted that the support of each piN , is compact and contained in 

the interval ],[ 1 pii uu . For an open, non-uniform knot vector, the basis 
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functions are interpolatory at the ends of the interval. 

3 Discretization of boundary integrals 

Consider the following boundary integral: 
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     In this paper, the singular integrals are evaluated in the Cauchy principal 
value sense, i.e., 
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     After discretizing the boundary  into Nelem elements, the global coordinate 
vector x  within each element is interpolated through the coordinates of the 
element nodes, i.e.,  
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and eqn. (2) can be written as 
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in which e  is the global integration region of element e,   is a straight line 

from –1 to +1 for 2D and a ]1,1[]1,1[  square for 3D problems, and eJ  is the 

transformation Jacobian from the global coordinates to the intrinsic coordinates. 
     For regular integrals, eqn. (5b) can be evaluated using Gaussian quadrature 
for each element [10]. For singular integrals, a particular integration technique 
should be used.  

4 Evaluation of 2D singular boundary integrals 

Consider integration over a line element. Eqn. (5b) becomes 
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in which s=1 and 2, 11  , 12   and ),( 1 p  and ),( 2 p  are the local 

distances from the source point to node 1 and node 2, respectively.  
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     Considering a limiting process, eqn. (7) yields 
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where )(s  is an infinitesimal local distance determined by an infinitesimal 

global distance  for the integration region formed by the source point and 
element nodes. 

4.1 Express r as power series 

In order to evaluate the singular integrals in eqn. (8), the global distance r needs 
to be expressed as a power series in the local distance  . To do this, the 

following expansion is proposed: 
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where M is the order of the power series, and nG  are coefficients. These 

quantities can be exactly determined by comparing equal order terms of  on the 

left- and right-hand sides of the following equation 
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where  
  sp )( . (11) 

4.2 Express non-singular part of the integrand as a series of third-degree  
B-spline basis functions 

Substituting eqn. (9) into eqn. (8) results in 
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     In order to evaluate the singular integral in the above equation, the non-
singular part of the integrand is expressed as a series of third-degree B-spline 
basis functions in the local distance  , i.e., 
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where )(3, nN  are third-degree B-spline basis functions and nB are coefficients. 

Once knot vector },...,,{ 1310  LU  is defined, the third-degree B-spline 

basis functions )(3, nN  can be determined. In this paper, the following seven 

types of knot vectors are used, corresponding to L=3,4,…,9 , respectively. 

 }ˆ,ˆ,ˆ,ˆ,0,0,0,0{1 U , (14a) 
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 }ˆ,ˆ,ˆ,ˆ,2/ˆ,0,0,0,0{2 U  , (14b) 

 }ˆ,ˆ,ˆ,ˆ,3/ˆ2,3/ˆ,0,0,0,0{3  U , (14c) 

 }ˆ,ˆ,ˆ,ˆ,4/ˆ3,2/ˆ,4/ˆ,0,0,0,0{4  U  , (14d) 

 }ˆ,ˆ,ˆ,ˆ,5/ˆ4,5/ˆ3,5/ˆ2,5/ˆ,0,0,0,0{5  U , (14e) 

 }ˆ,ˆ,ˆ,ˆ,6/ˆ5,3/ˆ2,2/ˆ,3/ˆ,6/ˆ,0,0,0,0{6  U , (14f) 

 }ˆ,ˆ,ˆ,ˆ,7/ˆ6,7/ˆ*5,7/ˆ4,7/ˆ3,7/ˆ2,7/ˆ,0,0,0,0{7  U , (14g) 

where ),(ˆ sp   . It should be noted that the open knot vectors listed in 

eqns. (14a)–(14g) are 2C -continuous [11, 12] except at the endpoints of the 
interval and that makes the calculation more accurate. Besides, basis functions 
formed from open knot vectors are interpolatory at the ends of the parametric 
space interval )],(,0[ sp  , i.e.,  
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      The other coefficients nB  are determined by collocating L+1 equally spaced 

points ( L  ,,,0 1  ) over the integration region )],(,0[ sp  , in which 

),( spL   . These coefficients can be solved using 
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where  )1( LR  is a square matrix of order L-1, i.e., 
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and  B  and  Y  are vectors as follows 
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     Because the local support property [11, 12] of B-spline basis functions, the 
coefficient matrix  )1( LR  is banded and eqn. (16) is easy to be solved. 

4.3 Evaluation of singular boundary integrals 

Once the coefficients nB  are obtained from above equations, substituting 

eqn. (13) into eqn. (12) yields 
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     The formulation of third-degree B-spline basis functions )(3, nN  can be 

deduced from eqns. (1a) and (1b) as 
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Substituting eqn. (21) into eqn. (20) yields 
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From eqn. (21), it can be seen that njM is cubic polynomial functions of 

independent variable  . So njM  can be expressed as  
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where njkA can be determined by polynomial arithmetic of eqn. (21).  

     Then njT from eqn. (22) can be expressed as 
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      The limiting terms in eqn. (25) can be expressed as summations of finite 
parts and infinite terms [10], i.e., 
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     The results and detailed derivation of coefficients 0H and 1 kH  can be seen 

in [10]. For a physical problem, the infinite terms in eqn. (26) should be 
cancelled out by free terms [8]. Thus, substituting eqn. (26) into eqn. (25), it 
follows that 
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     Substituting eqn. (27) into eqn. (24), the result into eqn. (22), and finally 
applying eqn. (19) yields 
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     Equation (28) is the regularized expression for evaluating 2D singular 
boundary integrals specified by eqns. (6) and (7).  

5 Evaluation of 3D singular boundary integrals 

5.1 Radial integration formulas 

For 3D boundary integrals, eqn. (5b) can be written for the e-th quadrilateral 
element as 

 
   1

1
1
1 ),(

),(
)( 


ddJ
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f
I ep

p
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xx
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x . (29) 
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     Using the Radial Integration Method by Gao [13, 14], the integral in eqn. (29) 
can be transformed into a contour integral along the four sides of the element, 
i.e., 

 
)(),(

),(

),(

1
)( qdLF

n

qp

qp
I L

ppe  


 qxxx



, (30) 

where 
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xx q , (31) 

in which q represents the field point which takes on a value from the boundary of 
the squares; ),(  nnn   is the outward normal to the boundary of the 

integration square in the intrinsic coordinate system (, ); and   is the local 

distance defined as 

 
22 )()( pp   . (32) 

5.2 Express r as power series 

To evaluate the radial integral (31), as in the previous section, we need to express 
the global distance r as a power series in the local distance  . Equation (9) is 

still available. For quadrilateral element, eqn. (9) can be written as 
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     Substituting the following relationships  
    ,, ;  pp  (34) 

into eqn. (33) and comparing equal order terms of  on the left- and right-hand 

sides can obtain the results in principle and the value of M is 2 for 4-noded, 4 for 
8-noded and 6 for 9-noded shape functions, respectively. 

     Once the coefficients nG  are obtained, substituting eqn. (9) into eqn. (31) 

yields  
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5.3 Express non-singular part of the integrand as a series of third-degree  
B-spline basis functions 

As in Section 4.2, the singular integral in the above equation is evaluated by 
expressing the non-singular part of the integrand as a series of third-degree  
B-spline basis functions in  , i.e.,  
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     Eqns. (14)–(18) are applied to determine the coefficients nB . Once 

coefficients nB are obtained, substituting eqn. (36) into eqn. (35) yields 
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where  
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5.4 Evaluation of singular boundary integrals 

Following the procedure in section 4.3 (as Eqns. (21)–(25) do) yields the 
following equation 
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where njkA is defined as eqn. (23) and determined by polynomial arithmetic of 

eqn. (21) . The regularized njkE has the following form 
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where coefficients nH  are determined using Eqns. (26a) and (26b). 

     Substituting eqn. (40) into eqn. (39), the result into eqn. (37) yields 
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which can be used to tackle 3D singular boundary integrals.  

6 Numerical examples 

Example 1: (2D Singular Boundary Integrals   drrI i
p

i
/)( ,x ). In the 

integrand, ii xrr  /, . The integration is over a straight line with a length of 3 

and a tilt angle of 30º (figure 2). The source point considered is located at 1/3 
along the length of the line. For a straight line, ir,  is a constant.  

     Tables 1 and 2 show the analytical and computed results where the two sets of 
results are almost the same. The current computed results for L=3,4,…,9 , which 
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Figure 2: Integration boundary. 

are corresponding to knot vectors defined as eqns. (14a)–(14g) are the same. 
That’s because the non-singular part of the integrand is a constant.  
 

Table 1:  Computational results for )(1
pI x . 

 =2 =3 =4 =5 
Analytical 0.4330128 0.3247596 0.2525908 0.2029748 
Current 0.4330127 0.3247595 0.2525907 0.2029747 

Table 2:  Computational results for )(2
pI x . 

 =2 =3 =4 =5 
Analytical 0.2499998 0.187499866 0.1458332 0.1171874 
Current 0.2500000 0.187500000 0.1458333 0.1171875 

 
Example 2: (Highly Singular Integral over a Curved 3D Boundary Element). 
The curved element is a quarter frustum of a cone panel (up radius=1, bottom 

radius=1.5, height=1) as shown in Figure 3. 



 




 dn
n

r
r

r
I p

33,3
1

)( x . 

     Three source points are computed corresponding to intrinsic coordinates 
=0.5 and =0.5, 0.75, and 0.99, respectively.  
     Table 3 lists the computed results for singularity orders of  from 1 to 6 for 
these points using L=9. While E in Table 3 denotes the computed results using 
L=6 and B denotes the computed results in the case that the integration interval 

)],(),([ qp in eqn. (35) is equally divided into 20 parts and the non-singular 

part of the integrand in each sub-interval is expressing as a series of three-order 
B-spline basis functions in  using L=9. The problem is also analyzed by the 

method in [10] for comparison. From Table 3 it can be seen that, good results 
can be obtained using L=9 for  =1, 2 and 3, while for  =4, 5 and 6, they are 
moderately close. However, for  =4 or 5, the results can be improved by 
expressing the non-singular part of the integrand as multi-segment series of 
three-order B-spline basis functions (results denoted by B). While for  =6, the 
results can be improved by using smaller L (results using L=6 are denoted by E). 
Good results can still be achieved even if the source point is very close to the 

1

2

3

xp
30ora=1

rb=2
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boundary (the case of =0.99). This is attributed to the use of the subdivision 
technique [2, 16, 17] in the evaluation of the contour integral shown in eqn. (30). 

Table 3:  Computed results for various values of  at three source points. 

 0.5   (Point a) 0.75 (Point b) 
 Ref. [10] Current Ref. [10] Current 
1 0.112867 0.112869 0.105666 0.105667 
2 -0.094925 -0.094955 -0.1362621 -0.1362744 
3 -0.342384 -0.343038 -0.5232094 -0.5237431 
4 -0.362838 -0.355644 

-0.357311,B 
-1.160997 -1.155234 

-1.156895,B 
5 -0.586423 -0.618487 

-0.601696,B 
-4.423292 -4.455555 

-4.43633,B 
6 -1.464013 -1.427682 

-1.459975,E 
-21.04375 -21.01116 

-21.04945,E 

 0.99  (Point c) 
 Ref. [10] Current 
1 0.0909436 0.0909439 
2 -0.392686 -0.392679 
3 -9.887196 -9.887706 
4 -687.6359 -687.7020 
5 -69731.26 -69725.60 
6 -8.277E+06 -8.279E+06 

 

 

Figure 3:

 

Curved 3D Boundary Element.

 

 

7 Concluding discussions 

A novel method has been presented for evaluating high order of 2D and 3D 
singular boundary integrals based on the uses of power series and B-spline basis 
functions expansion technique and the RIM. The distinct feature of this method 
is that various orders of singular integrals are treated in a simple and unified 
way. And the coefficients calculation becomes much simpler because of the local 
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support and the endpoint interpolatory properties of B-spline basis functions with 
open knot vectors compared to the method in [10]. The provided numerical 
examples demonstrate that the presented method is accurate and robust.  
     It is emphasized that this work only deals with singular integrals that exist in 
the Cauchy principal value sense and the derived nH  can treat singularity orders 

of  up to 5 for 2D and 6 for 3D boundary integrals. This is sufficiently high for 
general physical problems. However, if needed, coefficients for higher 
singularity values can be derived following the procedure described in [10]. 
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