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Abstract

A novel method is presented for numerical evaluation of high-order singular
boundary integrals that exist in the Cauchy principal value sense in two- and
three-dimensional problems. In this method, three-dimensional boundary
integrals are transformed into a line integral over the contour of the surface and a
radial integral which contains singularities by using the radial integration
method. The analytical elimination of singularities condensed in the radial
integral formulas can be achieved by expressing the non-singular parts of the
integration kernels as a series of cubic B-spline basis functions in the local
distance p of the intrinsic coordinate system and using the intrinsic features of
the radial integral. Some examples are provided to verify the correctness and
robustness of the presented method.

Keywords: singular integrals, boundary element method, radial integration
method, Cauchy principal value, B-spline basis function.

1 Introduction

Once the boundary element method (BEM) [1, 2] is used to solve potential and
mechanical problems, various orders of singular integrals appear in the basic
boundary integral equations and their gradient computation equations [2]. The
accurate evaluation of general high-order singular boundary integrals is very
important and has obtained extensive research in recent years [3—8].

Recently, for evaluating arbitrarily high-order 2D and 3D singular boundary
integrals in a unified way, Gao [9, 10] proposed an efficient approach by
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expressing the non-singular part of a singular integrand and the global distance r
as power series in the local distance p of the intrinsic coordinate system and then
eliminating the singularities analytically.

In this paper, the global distance r is expressed as power series in p, and the
non-singular part of a singular integrand is expressed as a series of third-degree
B-spline basis functions [11] in p. One advantage of this method is that the
coefficients calculation becomes much simpler because of the local support and
the endpoint interpolatory properties of B-spline basis functions with open knot
vectors [12] compared to coefficients calculation in reference [10]. For three-
dimensional boundary integrals, the radial integration method (RIM) [13, 14] is
employed and the singularities condensed in the radial integral are removed
analytically in the intrinsic coordinate system. A number of numerical examples
will be given to verify the correctness and robustness of the presented method.

2 B-spline basis functions

Let U :{u ,...,um} be a nondecreasing sequence of real numbers, i.e.,
u; <u;,i=0,1...,m—1. u; are called knots, and U is the knot vector. The ith

B-spline basis function of p-degree, denoted by N; p(u), is defined as [11, 15]:

1 if u, <u<u;
N,’o — f i t.+l , (la)
0 otherwise
u—u; Uirpy —U
Ni, (”):—Ni,pfl(“)er—Nm,pq (”)» (1b)
Uip —U; Uirprl —Uin

where i=0,1,...,n; m=n+p+1. If knots are equally-spaced in the parametric space,
they are said to be uniform [11, 12]. A knot vector is said to be open if its first
and last knots appear p+1 times. An initial example of the results of applying

(1a) and (1b) to a uniform knot vector U = {0,1,2,3,4,5,6} is presented in figure 1.
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Figure 1: B-spine basis functions of order 0,1,2,3 for uniform knot vector U
={0,1,2,3,4,5,6}.

It should be noted that the support of each N, , is compact and contained in

the interval [u;,u;, ,,/]. For an open, non-uniform knot vector, the basis
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functions are interpolatory at the ends of the interval.

3 Discretization of boundary integrals

Consider the following boundary integral:
-
](xp):-[r f(x¥,x) T
B (P
r’(x?,x)
In this paper, the singular integrals are evaluated in the Cauchy principal
value sense, i.e.,

(x), 2

_ S(xPx) o f(x”,x)
=k g O I e S T ®

After discretizing the boundary T" into N, elements, the global coordinate
vector X within each element is interpolated through the coordinates of the
element nodes, i.e.,

Nnude
x(§)= LN, (Hx", “
a=1
and eqn. (2) can be written as
NE em
IxP)= 19 ("), (a)
e=1
where
B f(x?,x f(x?,x
reery=f L grio = LD g arg by
r(x?,x) ri(x?, x)
in which I, is the global integration region of element e, I'; is a straight line
from —1 to +1 for 2D and a [-1,1]x[-1,1] square for 3D problems, and |J,| is the

transformation Jacobian from the global coordinates to the intrinsic coordinates.

For regular integrals, eqn. (5b) can be evaluated using Gaussian quadrature
for each element [10]. For singular integrals, a particular integration technique
should be used.

4 [Evaluation of 2D singular boundary integrals

Consider integration over a line element. Eqn. (5b) becomes

I°(x?)=I{ (x?)+ I5(x7), (6)

where
reery= [P SOy 7
s (x?) .[() rﬁ(xp,x)| e| o ™

in which s=1 and 2, § =-1, & =1 and p(&,,&;) and p(&,,&,) are the local

distances from the source point to node 1 and node 2, respectively.
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Considering a limiting process, eqn. (7) yields

(v P
(fpafs)f(x ’X)|Je|dp, ®)

£(x")= lim [*
! ﬂ.v(a)—>OI <(£) P (x?, x)

where p,(€) is an infinitesimal local distance determined by an infinitesimal

global distance ¢ for the integration region formed by the source point and
element nodes.

4.1 Express r as power series

In order to evaluate the singular integrals in eqn. (8), the global distance r needs
to be expressed as a power series in the local distance p. To do this, the

following expansion is proposed:

M
r=pp= p,/ ZOan” , ©)]
n=

where M is the order of the power series, and G, are coefficients. These
quantities can be exactly determined by comparing equal order terms of p on the
left- and right-hand sides of the following equation
2
D [ Nygge o » M n
21 ZN PN -5 =Pt XGp" (10)
i=1 [ a=l n=0

where

s(p)=¢, +5p. an

4.2 Express non-singular part of the integrand as a series of third-degree
B-spline basis functions

Substituting eqn. (9) into eqn. (8) results in

f(x?, 2/,
ey = tim [Pée L0

P10 258 (p) pf

(12)

In order to evaluate the singular integral in the above equation, the non-
singular part of the integrand is expressed as a series of third-degree B-spline
basis functions in the local distance p , i.e.,

ACIEED A
_—||= 2B,N,;(p), (13)
B
p(p) n=0
where N, ;(p) are third-degree B-spline basis functions and B, are coefficients.
Once knot vector U={py, 0y,--»Pr43.1}1s defined, the third-degree B-spline
basis functions N, ;(p) can be determined. In this paper, the following seven

types of knot vectors are used, corresponding to L=3.4,...,9 , respectively.
Ul :{anaoaoabababab}y (148.)
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U, =10.0.00,5/2,5.5.5.5} , (14b)

Us ={0,0,0,0,5/32% p/3, 5,5, p. P} , (14c)

U, ={0,0,0,0,p/4,p/23%pl4,p, p.p. p} (14d)

Us ={0,0,0,0,0/52% p/53% 54+ pl5,p, p, . ph» (14e)
Us =1{0,0,0,0,p/6,p/3,p/2.2% p/35% p/6,p,p. p, p} » (14f)

U; ={0,00,0,0/72%p/73%plT4%pl75%pl1,6%p!T,p,0, 0,0}, (14g)
where p=p(&,,&). It should be noted that the open knot vectors listed in

eqns. (14a)—(14g) are C?-continuous [11, 12] except at the endpoints of the
interval and that makes the calculation more accurate. Besides, basis functions
formed from open knot vectors are interpolatory at the ends of the parametric

space interval [0, o(&,,&,)], i-e.,
fx? x| F(xP, x|,
=% B
(Cyp) P (p(&,,8,))

The other coefficients B, are determined by collocating L+1 equally spaced

B, (15)

points (0, pj, -+, p; ) over the integration region [0, 0(¢,,¢)], in which

p1=p&,,&;) - These coefficients can be solved using

[R(L-D}B) =}, (16)
where [R(L - 1)] is a square matrix of order L-1, i.e.,
Nis (o}) Nyj (o) s NL—l,s(pf)
[R(Z -1)]= 1:\’1,3(/32:)’ N2,3(,02:), R NL—1,3(P2) (17)
Nis (p'L—l )7 Nyj (p'L—l ), o N (PLl )

and {B} and {Y } are vectors as follows
S NN B () =B N () BN 5 ()
XN () -BN(B)-BN,5(h)

(18)

- ; B
BL—I f (xp sxb j‘]e / pﬂ (pz—l)_BOM)ﬁ(ﬂL—l)_BL]VL,S(pz—l)
Because the local support property [11, 12] of B-spline basis functions, the
coefficient matrix [R(L —1)] is banded and eqn. (16) is easy to be solved.

4.3 Evaluation of singular boundary integrals

Once the coefficients B, are obtained from above equations, substituting
eqn. (13) into eqn. (12) yields
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. L () p L
L&N=38, tim [N, (p) o dp= 28,0, (19)
where
0,= lim [X5" N.s(p)/ pdp. (20)

The formulation of third-degree B-spline basis functions N, ,(p) can be
deduced from eqns. (1a) and (1b) as
(p-p,)’ A
= :Mn s P E[pnyanr )
(pn+37pn)(pn+27pn)(pn+] 7pn) ! 1
(P=P) (Puiz = P)
(pn+3 - p;z)(pn+2 — Pn )(pn+2 - pn+1)
(P = L) Pus = P)P = Pui1)
(pn+3 - pn)(pn+2 - pn+1)(pn+3 - pn+1)
_ _ 2 A
Pnra=P)P = Pui1) S pelpnpn) 21
(pn+4 - pn+l)(pn+3 - pn+l)(pﬂ+2 - pn+l)
(P =P Puss—P)
(pn+3 - pn)(pn+3 - pn+2)(pn+3 - pn+l)
(Pns3 = P)Puia = PP = Pui1)

+

Nn’3(p) =

+
(pn+3 - pn+2)(pn+4 - pn+1)(pn+3 - pn+1)
— ) (p— A
(Pura = P) (P = Pusd) “M s P ElPynspres)
(pn+4 - Pn+1)(Pn+3 - pn+2)(pn+4 - pn+2)
(pn+4 - p)3 A

:Mn43 P E [pn+37pn+4)

(pn+4 - pn+1)(pn+4 - pn+2)(pn+4 - pn+3)

Substituting eqn. (21) into eqn. (20) yields
0,= 1(11;1 O(IPMM /pﬂdp+‘[p’”2M 5 /pﬁdp-‘rjp””M /,0 dp+
Py (&)

A
Pn+a Pn+ ﬁ —
10 M | p" dp)= jzl[p}(gg o(fmﬁ My /p dpjj— 27,

. (22)

From eqn. (21), it can be seen thatM,;is cubic polynomial functions of

independent variable p. So M, can be expressed as
3
M= Aup" . j=1234,n=0]..,L, (23)
k=0

where A, can be determined by polynomial arithmetic of eqn. (21).

ThenT,; from eqn. (22) can be expressed as

3
= im [ p*Pdp|=>4.E, 24
g l‘ljk[p (8)4)0 Pre lp p) kg() njk = njk > ( )

where
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0, for p,., 1 = Puss
I
k—p+1

! L lim !
k=B +1] plif" et pl ey |
Puiyi=p.(e) and k= f-1;
Inp, ;= lim Inp.(&).forp, ;,# PP, =p(e)and k= f-1.

, forp, ; #p,,;and p, ; #p(e); (25)

njk =

for .\ # p,,, and

The limiting terms in eqn. (25) can be expressed as summations of finite
parts and infinite terms [10], i.e.,

lim Inp,(¢) =InH, + Infinite terms , (26a)
ps(£)>0

lim ———=H4 , , +Infiniteterms (0<k<pB-2). 26b
B0 P () gkt +Infi ( B-2) (26b)

The results and detailed derivation of coefficients Hyand H ;_, , can be seen

in [10]. For a physical problem, the infinite terms in eqn. (26) should be
cancelled out by free terms [8]. Thus, substituting eqn. (26) into eqn. (25), it
follows that

0, for Pn+j-1 = Pnsj

pk—,/fﬂ _ S k=p+1
n+j n+j-1
k—iﬂi—l’ for p,, ;1 # puyy and p, ;g #p(€)
! ! H for p # Purjs P ps (&) @7
= 41| k. Hp-k-1 ) n+j-1 n+j>Pnvj-1 =Ps
E = k—p+1 pfﬂ.
and 0<k<p-2
Inp,, ;—InHy,forp, ;# P, Purj =Ps(6)and k = -1

k-p+1
Pn+j

k—p+1

H] forpn+j—l¢pn+j’ pn+j—1 =px(5) andk>ﬁ_1

Substituting eqn. (27) into eqn. (24), the result into eqn. (22), and finally
applying eqn. (19) yields

L 4 3
[;-’(xp): ZBn Z Ary'kEnjk . (28)
n=0  j=1k=0

Equation (28) is the regularized expression for evaluating 2D singular
boundary integrals specified by eqns. (6) and (7).

5 Evaluation of 3D singular boundary integrals

5.1 Radial integration formulas

For 3D boundary integrals, eqn. (5b) can be written for the e-th quadrilateral
element as

(P
re(x") =" EI%IQI%M . (29)
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Using the Radial Integration Method by Gao [13, 14], the integral in eqn. (29)
can be transformed into a contour integral along the four sides of the element,
i.e.,

eyl — 1 ap(p’q) P 4 30

I°(x") IL—p(p,q)—an' F (x¥,x")dL(q), (30)
where

F (x?,x%)= lim jp("’”f(x—p’x)pepdp, 31

Pu(8)07PaE) (B (P

in which q represents the field point which takes on a value from the boundary of
the squares; n'=(nf,n;) is the outward normal to the boundary of the

integration square in the intrinsic coordinate system (&, 1); and o is the local
distance defined as

p=\E-£)" +(1-n,)" . (32)

5.2 Express r as power series

To evaluate the radial integral (31), as in the previous section, we need to express
the global distance r as a power series in the local distance p . Equation (9) is

still available. For quadrilateral element, eqn. (9) can be written as
2

D | Nyoge M
r? = Z}{ 2 No HRRI) —x,-p} =p’ 260" (33)

= a= n=

Substituting the following relationships

E=&,+ppss m=n,+pp, (34)
into eqn. (33) and comparing equal order terms of p on the left- and right-hand

sides can obtain the results in principle and the value of M is 2 for 4-noded, 4 for
8-noded and 6 for 9-noded shape functions, respectively.

Once the coefficients G, are obtained, substituting eqn. (9) into eqn. (31)
yields

f(x?,x)|J
F(x?,x%)= lim P“”f)f(—)le'dp. (35)
Pu(e)-0°Pa(®) 5B () 5
5.3 Express non-singular part of the integrand as a series of third-degree
B-spline basis functions

As in Section 4.2, the singular integral in the above equation is evaluated by
expressing the non-singular part of the integrand as a series of third-degree
B-spline basis functions in p , i.e.,
LG A
TH: ZBnNn,:i(p)' (36)
p (p) n=0
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Eqns. (14)—(18) are applied to determine the coefficients 5, . Once

n

coefficients B, are obtained, substituting eqn. (36) into eqn. (35) yields

F(x? xq)=i3 lim [PCrS)N (o) pPld, =§B 0 (37)
s n . (&) n3 PP P nxn >
n=0 ()07 n=0

where

= e SN, () PP dp (38)

5.4 Evaluation of singular boundary integrals

Following the procedure in section 4.3 (as Eqns. (21)—(25) do) yields the
following equation

4 3
Qn = z ZAn/kEnjk ’ (39)
J=lk=0

where A, is defined as eqn. (23) and determined by polynomial arithmetic of

eqn. (21) . The regularized E,; has the following form

0, for pn+j—1 = pn+j
k=p+2 k—p+2
Pn+j = P+ j-1
W’ for pyjo1 # Pysj and p, iy # ps(€)
1|:ﬂ1“_Hﬂk2:1’ for anrjfl # pn+j5 s (40)
E,; = k=p+2| py;

Pt j1 =p,(e)and0< k< -3
In Pn+j —lIn HO’forpn+j—1 # Pt js Pt j-1 =p,(e)and k= -2

k—p+2
pn+j

k-p+2’
where coefficients /{, are determined using Eqns. (26a) and (26b).

forpnf/'fl # pn+/" pn+/'71 :px(g) and k > ﬂ_z

Substituting eqn. (40) into eqn. (39), the result into eqn. (37) yields
L 4 3
F(xpaxq): ZZZBnAry’kEnjk > (41)
n=0j=1k=0
which can be used to tackle 3D singular boundary integrals.

6 Numerical examples

Example 1: (2D Singular Boundary Integrals 7,(x?)=[.r;/ #Pdr). In the
integrand, r; = 0r/0x;. The integration is over a straight line with a length of 3

and a tilt angle of 30° (figure 2). The source point considered is located at 1/3
along the length of the line. For a straight line, r; is a constant.

Tables 1 and 2 show the analytical and computed results where the two sets of
results are almost the same. The current computed results for L=3.4,...,9 , which
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Figure 2: Integration boundary.

are corresponding to knot vectors defined as eqns. (14a)—(14g) are the same.
That’s because the non-singular part of the integrand is a constant.

Table 1: Computational results for 7, (x?).
=2 B=3 B=4 B=5
Analytical 0.4330128 | 0.3247596 0.2525908 0.2029748
Current 0.4330127 | 0.3247595 0.2525907 0.2029747
Table 2: Computational results for 7, (x”).
p=2 B=3 B=4 B=5
Analytical 0.2499998 | 0.187499866 | 0.1458332 0.1171874
Current 0.2500000 | 0.187500000 | 0.1458333 0.1171875

Example 2: (Highly Singular Integral over a Curved 3D Boundary Element).
The curved element is a quarter frustum of a cone panel (up radius=1, bottom
radius=1.5, height=1) as shown in Figure 3.7 (¥’ ) :Ir ;—;{3;13 % - an\' .

Three source points are computed corresponding to intrinsic coordinates
£=0.5 and n=0.5, 0.75, and 0.99, respectively.

Table 3 lists the computed results for singularity orders of  from 1 to 6 for
these points using L=9. While E in Table 3 denotes the computed results using
L=6 and B denotes the computed results in the case that the integration interval
Lo, (&), p(p,q)]in eqn. (35) is equally divided into 20 parts and the non-singular
part of the integrand in each sub-interval is expressing as a series of three-order
B-spline basis functions in p using L=9. The problem is also analyzed by the
method in [10] for comparison. From Table 3 it can be seen that, good results
can be obtained using L=9 for § =1, 2 and 3, while for =4, 5 and 6, they are
moderately close. However, for § =4 or 5, the results can be improved by
expressing the non-singular part of the integrand as multi-segment series of
three-order B-spline basis functions (results denoted by B). While for § =6, the
results can be improved by using smaller L (results using L=6 are denoted by E).
Good results can still be achieved even if the source point is very close to the
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boundary (the case of n=0.99). This is attributed to the use of the subdivision
technique [2, 16, 17] in the evaluation of the contour integral shown in eqn. (30).

Figure 3: Curved 3D Boundary Element.
Table 3: Computed results for various values of 3 at three source points.
n 0.5 (Point a) 0.75 (Point b)
B Ref. [10] Current Ref. [10] Current
1 0.112867 | 0.112869 0.105666 0.105667
2 -0.094925 | -0.094955 -0.1362621 | -0.1362744
3 -0.342384 | -0.343038 -0.5232094 | -0.5237431
4 -0.362838 | -0.355644 -1.160997 -1.155234
-0.357311,B -1.156895,B
5 -0.586423 | -0.618487 -4.423292 -4.455555
-0.601696,B -4.43633,B
6 -1.464013 | -1.427682 -21.04375 -21.01116
-1.459975,E -21.04945,E
n 0.99 (Point c)
B Ref. [10] Current
1 0.0909436 0.0909439
2 -0.392686 -0.392679
3 -9.887196 -9.887706
4 -687.6359 -687.7020
5 -69731.26 -69725.60
6 -8.277E+06 | -8.279E+06

7 Concluding discussions

A novel method has been presented for evaluating high order of 2D and 3D
singular boundary integrals based on the uses of power series and B-spline basis
functions expansion technique and the RIM. The distinct feature of this method
is that various orders of singular integrals are treated in a simple and unified
way. And the coefficients calculation becomes much simpler because of the local
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support and the endpoint interpolatory properties of B-spline basis functions with
open knot vectors compared to the method in [10]. The provided numerical
examples demonstrate that the presented method is accurate and robust.

It is emphasized that this work only deals with singular integrals that exist in

the Cauchy principal value sense and the derived H,, can treat singularity orders

of B up to 5 for 2D and 6 for 3D boundary integrals. This is sufficiently high for
general physical problems. However, if needed, coefficients for higher
singularity values can be derived following the procedure described in [10].
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