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Abstract

We propose a new method for the numerical solution of a class of two-
dimensional parabolic problems. Our algorithm is based on the use of the
Alternating Direction Implicit (ADI) approach in conjunction with the
Chebyshev tau meshless method based on the highest derivative (CTMMHD).
CTMMHD is applied to solve the set of one-dimensional problems resulting
from operator-splitting at each time-stage. CTMMHD-ADI yields spectral
accuracy in space and second order in time. Several numerical experiments are
implemented to verify the efficiency of our method.
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1 Introduction

In this paper, we present a new method, which combines the well-known
Alternating Direction Implicit (ADI) method [1] with Chebyshev tau meshless
method based on the highest derivative (CTMMHD) [2].

The tau approach is a kind of classical meshless method. In the previous
study, we have proposed Chebyshev tau meshless method based on the highest
derivative (CTMMHD) [2]. The starting point is the Chebyshev expansion of the
highest derivative, and then the lower derivatives and the unknown function are
constructed through an integration process. It is worthwhile to mention that for
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one dimensional problem, CTMMHD leads to the coefficients matrices with low
magnitude condition numbers O (1) .

Alternating Direction Implicit (ADI) approach is of interest since it can solve
multi-dimensional problems as a series of one dimensional problems. Hence,
there is a significant reduction in the computing time and storage requirements.
Moreover, ADI algorithms can yield unconditional stability at approximately the
same cost per time-step as explicit finite-difference formulations [3]. Various
finite-difference-based ADI algorithms for unsteady convection-diffusion
problems have been put forward [4—6]. ADI methods have also been previously
used in conjunction with spatial differentiation methods which, do not rely on
finite differencing in recent years, for example, Bruno and Lyon developed
Fourier-Continuation Alternating-Direction (FC-AD) methodology [3].

In our method, the original two-dimensional problem is reduced to a system
of Ordinary Differential Equations (ODEs) by the classical ADI approach [1]. To
complete the time-stepping algorithm, each ODE is solved by CTMMHD. Our
method yields spectral accuracy in space and second order in time. This paper is
the first step of the application of CTMMHD-ADI for solving time dependent
problems.

2 Chebyshev approximation
2.1 Integration and multiplication of Chebyshev expansions

The Chebyshev polynomial T, (x) satisfies the following property [7]
T, T (x
I T(y)dy T(x)j T(y)d ( ) ( ) (1a)

Yy = _ el -1,1],i=2. (1b)
J nly 2( +1) 2(i-1) veltil
Consider the truncated Chebyshev series ofu_ (x),u, (x), u(x):

N-3

9= Sall (2o ()= T, (s)ou(x) = S ),

i=0

b=[b]"", e=[c] ., U=[co by dy»-ay ] - Via property

Denotea=[ai]N ’ o > o

i=0
(1), we have
a=HUb=HU.c=H,U, 2)
here, H,,i=1,2,3 are known integration matrices of dimension (N - 2) xN .
Considering  the  multiplicationV (x)=d (x)u(x), with Chebyshev

N-3

coefficients V.=[V,]_ ",
U in terms of d [8]:
V=M,HUM,=[Md,Md,...M, d], 3)

d=[d,]".’. We have the relationship between V and

where
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with the highlighted elements 2 at(j+1,1)and 1at (1, j+1).

3 CTMMHD-ADI algorithm and implementation

3.1 Splitting of the two-dimensional convection-diffusion equation

2
s

We consider the following problem onQ =[-1,1]

0
6_1: =au, +b'uyy —pu,—qu, +Q(x,y,t),(x,y,t) eQx (O,T] , (4a)

u(x,y,t):G(x,y,t),(x,y)e@Q,te(O,T], (4b)

u(x,,0) =1, (x,),(x,y) e, (40)

where G ,u,and the source term Q are given sufficiently smooth functions. p

and g are constant, convective velocities; a and b are constant, positive diffusion
coefficients in the x and y direction, respectively.

Approximate the solution at timet" =nAt,n>0, At is the time increment,
and letu" = u(x,y,t") ,0""? = Q(x,y,t”*”2 ) Using a centre finite-difference
scheme around /"*"? = (n+1/2) At yields
b &

n+l n

u u _gi n+l n\, DO (s n
530 (" +u )+28y2 (" +u") .
_Bi ntl | on _gi ntl | oon n+1/2
5 6x(u +u ) 26y(u +u )+Q (x,y,0)+E, (x,y,At)
where
|E, (e, 80)| < AP 1 24w, |+ AZ 1 8||al|-[ut ||+ AZ /8[p]- |, | + A2 /8] |-t

w2 18l o H=Hh e
First, introduce the operators
R =1+At/2(a-0/ox’ —p-0/ox), R, =1+At/2(b-8° /3y’ —q-0/dy),

L ,=1-At/2(a-0"/ox* = p-0/ax), L, =1-At/2(b-8" /&y’ —q-0/dy),

eqn. (5) becomes
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LLu"" =RRu"+AQ""? +E,(x,y,At)+ME, (x,y,At), 6)

where "E2 (x,y,At)" < CA?P (”u | m,y||+||uuy|

[

ey ),Cis a  constant

txxy

independent of Atz .
We introduce the approximationQ""* =1/2 (RXQ’””4 + LXQ"*W) +E,(x,

y,At),  with ||E3 (x,, At)" <A /160, |+ A7 /8||a- |0, |+ A /8| p||- |0

and establish a scheme of the form
L ~n+1/2 R ~n +At/2.Qn+1/4’ (73)

x

L ~n+1 R ~n+1/2 +At/2.Qn+3/4’ (7b)

>

where #" is the approximation to the exact solution " .

Eqn. (7) predicts a second order accurate in time [3].

In order to facilitate the description of our algorithm, we introduce the new
variables

1/2 ~n+1/2 ~ l
er+ qun-%—/ n+l R n+ (8)

Let fn+1/4 W +At/2 Qn+1/4 an dfn+3/4 n+]/2 +At/2'Qn+3/4 , thel’l eqn.
(7) is equivalent to
L ~n+1/2 (x’y) — fn+l/4 (x,y)’ (93)

LyunH (x,y) — fn+3/4 (x’y)’ (9b)

After some manipulations, we obtain
n+1/2 ~n+1/2 n+1/4
w'tE =20 —

Wn+l — zﬁnﬂ _fn+3/4.

Above equations have equivalent matrix form

H _a_AtH +pAtH Un+1/2 =H Fn+1/4, (IOa)
2 0 2 1 2
Ut g - bAt HT gAt HT —FT (10b)
2 2 2 2
and similarly
Wn+1/2 2Un+1/2 Fn+1/4’ (1 la)
Wn+l _ Un+l Fn+3/4 (1 lb)

with Chebyshev coefficients matrices U"""*, U""" corresponding to #"*"* 4",

respectively. Similar for W"*"* | W' F"*"* and F"*".
3.2 Treatment of boundary conditions

For solving eqn. (10a), we consider the @(x, y,¢) at time 7=¢"""? , which

satisfies the boundary conditions
~n+1/2 (1 y) G(lg ¥, tn+1/2) ~n+1/2 ( l y) G(-l, V. tn+1/2 ) (12)
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n+1/2
With the block matrix technique, denote U"*"* = Lljl”“ /2} , where
2
U = _Cco,o Cbo,o Cdooy CaO,N3:|
: _bco,o bby, bay, - bayy_, '
I acyy ab,, aa,, - adyys
U = . . . . ;
|acy s aby s aay 5, Ay sy
Let
1 ~n+ ~n+ 1 ~n+ ~n+
Pl(y):E( yvl/z (1 y) 1/2 -1 Ly ) E( 12 (1 y) 1/2( 1»)’))9
1 ~n+ ~n+ 1 ~n+ ~n+
P3(y)25( 1/2 (1 y) 1/2 1,)’))>P4 _E(uy 1/2 (1,y)+uy 1/2 (_Ly))’
1 1

Ps (y) — 2(~n+l/2 (1 y) n+l/2( 1,)/)),1)4 (y) — 2(~n+l/2 (1 y) ~n+]/2( l,y)),

with the Chebyshev coefficients P, =[P ]" *,j=12....6.

Based on the boundary condition treatment described in [2, Sec.3.1], we
arrive at

U;’H—]/Z :VI/IU;H/Z +g1, (13)

w {Qz}gl _[2e Re BT
o, Bs £, P
Now, denote LHS""* =H,—aAt/2-H,+ pAt/2-H,, LHS""=LHS""

(:,1:2) and LHS;™"* = LHS"*"?(:,3: end ), thus eqn. (10a) is equivalent to:
(LHSI"H/ZVVI +LHS2n+1/2)U;+1/2 — HZFn+1/4 —LHSI”H/zgl. (14)

n+l

with

Similar for solving eqn. (10b), which is defined at time ¢ =¢""", and satisfies
the boundary conditions

T R PETH NP S
We denote U™ = [U"+1 U"HJ with

CChp cb,, Cdog 00t Cyys
bey, bb,, bay, - e bag
U = acy, aby, U = aa,, -0 ottt A4y y o,
3 = . . Uy = . .
| 4Cn 30 ab,_ 30 | | 4y _30 aay 3 n-s |
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Let
P7(x)=%(~z;] (x 1) u"” x, l)) P(x %(ui\“(x 1) "”( —l))
1 ~n+ n+ 1 ~n+ ~n+
B (x) =2 (@ (o) =i (x,=1) By () = 2 (@ (v, 1)+ 2 (x.-1)),
~n+ ~n+ 1 ~n+ ~)7+
P (6) = (0 (1) (1. -1)) P () = (3 (1) 7 (1),
with the Chebyshev coefficients P, =[P ] *,j=7.8...12.
We similarly have
Ut =0, + g, (16)
with
P]]z R,ll
[Q2 ’Ql :|’ - 110 131,9 °
P, P

Denote LHS""' = Hy —bAt/2-Hy +qAt/2-H, LHS}" = LHS""' (1:2,7)
and LHS,"' = LHS""' (3: end,:) . Eqn. (10b) is equivalent to

U, (WoLHS; + LHS;" ) = F"*H] - g, LHS}"". (17)

3.3 Numerical methods for the problem with variable coefficients

Considering the initial-boundary value problem with variable coefficients

%:Lu+Q(x,y,t),(x,y,t)eQX(O,T], (18)

where the boundary and initial conditions are given in eqn. (4b) and (4c). The
elliptic operator is given by

Lu= a(x y) +b(x y) (x,y)Z—Z—q(x,y)Z—;’—C(x,y)u, (19)

with known smooth functions « (x,y) . b(x,»), p(x.y), g(x,») and ¢(x,y).
Inspired by the idea in eqn. (7), we take an iteration algorithm

l_a(x,yo)At8_22+p(x,yO)Ati+C(x yo)At FrZk . pnei/e
2 Ox 2 Ox 4
+ a(x,y)At_a(x,yO)At a_zﬁm/z,k_ p(x,y)At_p(x,yO)At iﬁml/z,k
2 2 ox’ 2 2 Ox
_[C(X’i})At—C(X i}O)At\J~n+l/2k’ (20)

where " :(1+b(x y)ALf2-0% 1 0y® —q(x,y)At]2-0/ by —c(x, y)At/4)11"+At/2
O a0 =" and Vy, €[-1,1], to simplify, take y, =-1.
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If |ﬁ"“/2”‘” —d’””z”‘|2tol(tol: the tolerance error), letk =k+1, k=0,1,

n+l/2 _ ~n+1/2,k+1

2,...; otherwise, denote i and go to another direction

[1_b(xoay)Ati_’_q(x09y)Ati+c(xmy)Atjwn,ku = e

u
2 oy’ 2 oy 4
+ b(x7y)At_b(x0’y)At a_zﬁnﬂ,k_ q(xﬂy)At_q(XO’y)At iﬁnﬂ,k
2 2 oy’ 2 2 oy
_[C(X’Z)At_c(xol‘y)Atjﬁnu,k’ @1

where
= (1 +a(x,y)At/2-0% | ox* — p(x,y)At]2-0/ ox —c(x,y)At/4)L7”“/2 +
At/z'Qn+3/4,ﬁn+l,0 — ﬁnH/Z and xO — _1 .

Iflg" " — g™ ¥ >0l ,  letk=k+1,k=0,1,2,...; otherwise, denote

~n+l ~n+l,k+1

u't =1 and go to eqn. (20) at next time step.

4 Numerical experiments

We demonstrate the applicability of CTMMHD-ADI through some numerical
tests. Given the numerical solution u™" and the exact solutionu®’, the
following errors are considered

exa num 2 _
u —u |,L = Z

where N is the number of test nodes calculated. The boundary and initial
conditions are directly taken from the analytical solutions, and the initial guess is
Zero.

L” = max
1<i<N

Problem 5.1 Consider the steady-state convection-diffusion problem [9],

2 2
—[a—f+6—‘;j+Rea—”=o,os;c,ysl, (22a)
ox” oy ox
u(x,O)zO,u(x,l)z0,0SxSl, (22b)
u(0,y)=sin(zy),u(l,y)=2sin(7zy),0< y <1, (22¢)

with the exact solution
2exp (— Re/ 2) sinh ox +sinh 0'(1 - x)
sinho

u(x,y)zexp(Rex/2)sin(7ry) , (23)

where o =+/7" +Re’/4 . This problem produces a layer along the line x =1, but
convection is limited to the x direction only (Figure.1 (a) : Re =10%).
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In the case with our meshless method, firstly transform the original domain
into (%, 7) €[~1,1]" . Secondly, introduce the sinh transform proposed by Tee and

Trefethen [10] to reduce the singularity in X direction,

X =0 +ksinh Hsinh1 (ﬂj +sinh™’ (ﬂnﬁ +sinh™’ (ﬂﬂ , (24)
K K 2 K

where 0 , k are parameters dependent on the singularity of the solution, which
respectively represent the location and width of the boundary layer. x =ce, ¢ is
a small parameter and ¢ is an appropriate chosen constant. For this problem,
e=2/Re,c=2.

The transformed equation

avg +bvy +cov, =0, (25)
where v is the transplant of » and the transformed coefficients
a=-8Eb=—6C=-8f +C&.
We take Re=1,10,10°,10" for testing, and Az =0.5. Figure.1 (b) shows the

I’ norm errors with different Chebyshev series numbers, which illustrates the
exponential convergence rate in space of our method.

Re =103

5 10 15 20 a5 30 35 40
N-2

(a): The numerical solution, N —2=29  (b): The convergence rate in space

Figure 1: Problem 5.1.

Problem 5.2 Consider the two-dimensional non-linear viscous Burgers’ equation
[11]ont€[0,1.25], &=0.05

2 2
a—u+ua—u+ua—u=g a—?+a—z ,0<x,y<I. (26)

ot ox oy ox” oy
Subject to initial and boundary conditions, the exact transient solution is

derived as
-1
xX+y—t
t)=|1+ —_— .

u(x7.1) { exp( - H o
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After the computational domain transformed into (%, 7) [~1,1]", the problem

is solved by the linearization process as follows

62 1/2,k a 1/2,k+1 62 a
1—2At8T2+Atﬁn+ ’ (iﬂjjo)fjﬁn+ = 1+2At€7—Atﬁn )?,)7)—~ u"
ox ox oy oy

+At(ﬁn+1/2,k (.)’E, }70)— ﬁn+]/2,k (i’)ﬂ}))iﬁn-ﬁ—lﬂ,k

>

0x
2 2
1_2At€%+Atﬁn+l,k ()‘Eo,j;)i ﬁn-#l,k-%—l — 1+2At€%_Atﬁn+1/2 (i,ﬁ)i)ﬁ“m
oy oy O0x 0X

+Af (arwl,k ()?O’j})_ﬁnﬂ,k (i,y))a%}ﬁnﬂ,k ,
(28)
with ¥, =y, =-1.

Figure. 2(a) depicts the L” norm errors at each time level with various time
steps, N -2 =20, tol =1le—10, and the numerical solution at 7' =1.25 is plotted
in Figure. 2(b) . Karaa [11] solve this example by the High Order Compact ADI
method. It is concluded that with Ax = Ay =0.05 and Ar=1.00x10" , the L*

norm error i50.0042 ; At =5.00x10"*, the L” norm error is improved to 0.0024.
Finally, it is improved into 1.5382¢—-004  with Ax=Ay=0.025,

At=1.00x10"". However, our method obtains much better results with fewer
unknowns.

107 T
4
g [/  cewpaditsesdei o
10° T
, # - %M*’X”% %xﬂm%ﬂ*ﬂﬁ%ﬁ)ﬁ*ﬂﬂ*w%m
-9
g 1 ! %M ,,.woww‘o—omwm«.»»wwowm,_,.
5 Y '[% “WWWWW##W .
£ 10"l o
5 Tt
£ s -
8, 10" B — == At=100%10°
4 B i
At=500x10"
w0 =m0 5050
—%=-at=125x107"
-13
° —+=-at=500x10"%
4 o at=100x10°5
10
0 0z 04 06 08 F 5 T

Time t

(a): The L* norm errors at each time (b): The numerical solution at
level with various time step T=125, At=1.00x10"

Figure 2: Problem 5.2.

Problem 5.3 Consider the system of two-dimensional Burgers’ equations [12],
ut+uux+vuy:e(uxx+uyy),0Sx,yS1, (29a)
vt+uvx+vvyzg(vxx+vyy),0Sx,yS1, (29b)

with the exact solutions
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TN
u(x,y, "4 4[1+exp((—4x4‘4)’_t)/(328)):|’

v(x,y,t)

1

(30a)

1

_3. '
4 4[1 +exp((—4x+4y - t)/(32‘9)ﬂ

(30b)

Khater et al. [12] combined traditional Chebyshev Spectral Collocation
method (ChSC) with Runge-Kutta method of order four to solve this problem.
Compared with the results obtained by ChSC (table 1), CTMMHD-ADI gives
higher accuracy (table 2).

Table 1: The L® norm error of u and v for ChSC.
ChSC[12] 7 =001 T=2
F4 At N +1 u v u v
P
1.000 | 500x10~ 11 1.31e-06 | 1.91e—06 | 1.61e—06 | 1.91e—06
0.100 | 500x10° | 11 | 477¢-07 | 596e—06 | 1.13¢—06 | 1.97¢—06
0010 | 100x10° | 21 | 322e-06 | 453¢—06 | 1.49¢—05 | 1.03¢—05
0.005| 100x10° | 31 | 225¢—05 | 2.19¢—05 | 9.99¢—05 | 1.06e—04
N, +1: the number of Chebyshev collocation points
Table 2: The L norm error of u and v for CTMMHD-ADI.
CTMMHD-ADI 7 =0.01 T=2
€ At N-=-2 u v u v
1.000 | 500x10° 10 634e—13 | 63le—13 | 1.00e—12 | 1.00e—12
0.100 | 500x10° 10 489¢—08 | 4.89¢—08 | 4.42¢—08 | 4.42¢—08
0.010 | 100x10° 26 4.69¢—07 | 4.69¢—07 | 6.26e—07 | 6.26¢—07
0.005 | 100x10° 40 1.95¢-06 1.95¢—-06 | 1.12¢—05 | 1.12e—05
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