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Abstract 

In this paper we present a hybrid finite element method (HFS-FEM) to model 
efficiently and accurately anisotropic materials with defects by developing 
special elements for elliptic hole/crack based on their associated Green’s 
functions. The hybrid method is formulated based on two independent 
assumptions: intra-element field in terms of the combination of fundamental 
solutions and inter-element frame fields along the element boundary. A modified 
functional, which is satisfying the governing equation, boundary and continuity 
conditions between elements, is proposed to derive the element stiffness. In this 
work, the foundational solutions of the anisotropic materials following Stroh 
formalism are employed to approximate the intra-element displacement field of 
general elements, while the special fundamental solutions satisfying the required 
boundary conditions for hole or crack are used for the special elements 
containing defects. Two examples are presented to assess the performance of the 
proposed method. Numerical results obtained for the stress concentration factor 
(SCF) and stress intensity factor (SIF) are extremely accurate for the investigated 
cases. 
Keywords: anisotropic elasticity, Green’s function, hybrid finite element, Stroh 
formalism, stress intensity factor. 
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1 Introduction 

In practice many structure are designed to involve holes for special purpose and 
in general there is no perfect materials existed. These facts make the stress 
analysis for materials with defects such as holes, cracks and inclusions is 
essential and important [1–5]. The mechanical behaviour of composite materials 
is usually studied by using anisotropic elasticity due to its anisotropic property. 
In literature, there are two main approaches dealing with the two-dimensional 
linear anisotropic elasticity. One is Lekhnitskii formalism [6] which begins with 
the stresses, the other is Stroh formalism [7, 8] which starts with the 
displacements, both of which are formulated by complex variable functions. 
Because of the limitations of the analytical solutions which are only available for 
problems with very simple geometry and boundary conditions [4, 9], numerical 
methods such as the finite element method (FEM), boundary element method 
(BEM) and mesh free method (MFM) are usually resorted to solve problems 
with multiple holes, cracks or inclusions under complicated boundary constraints 
and loading conditions [9, 10].        
     However, the mesh refinement near a hole or crack is required for FEM to 
achieve necessary accuracy, which is a very time-consuming and complex task 
[11]. To avoid the mesh refinement, a Green’s function for two-dimensional 
linear anisotropic elasticity has been derived [7] and linear boundary elements 
were developed and extended to the problems of multi-holes, cracks and 
inclusions by utilizing special Green’s functions [4, 12]. However, it is not 
appropriate to apply this special element to the problems whose holes are 
subjected to loads because of the traction-free-hole boundary condition. Recently 
a hybrid finite element formulation based on the fundamental solutions, called 
the HFS-FEM, was developed for solving three-dimensional elastic [13], thermal 
[14] and piezoelectric problems [15], which inherits the advantages of 
the Hybrid Trefftz FEM (HT-FEM) over the FEM and the BEM, such as the 
possibility of high accuracy using coarse meshes of high-degree elements, 
enhanced insensitivity to mesh distortion, great liberty in element shape, 
accurately representing various local effects without troublesome mesh 
adjustment [10, 16]. Compared to the HT-FEM, HFS-FEM has simpler 
interpolation kernel expressions for intra-element fields (fundamental solutions) 
and avoids the coordinate transformation procedure required in the HT-FEM to 
keep the matrix inversion stable. 
     In this paper a new efficient and accurate HFS-FEM with special elements for 
elliptic hole/crack is developed based on the associated fundamental solutions to 
model the anisotropic materials with defects. The hybrid finite element method is 
formulated based on two independent displacements, one is the interior 
displacement approximations in terms of the combination of fundamental 
solutions, and another is the element frame displacement fields defined along the 
element boundary. The element boundary integral functional is used to enforce 
the assumed two fields and generate the final element stiffness equation. In this 
work, the foundational solutions of the anisotropic materials are employed to 
approximate the intra-element displacement field of general elements, while the 
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special fundamental solutions satisfying the required boundary conditions for 
hole/crack are used for the special elements involving defects. Two examples are 
presented to demonstrate the accuracy and efficiency of the proposed method.  

2 Linear anisotropic elasticity 

2.1 Basic equations and Stroh formalism 

In the Cartesian coordinate system (x1, x2, x3), if we neglect the body force ib , 

equilibrium equations, stress-strain laws and strain-displacement equations for 
anisotropic elasticity can be written as [7]: 
 
 , 0ij j   (1) 

 ij ijkl klC e   (2) 

 , ,( ) / 2i j iij je u u   (3) 

 
where , 1, 2,3i j  , ij is the stress tensor, kle  the strain tensor, ijklC the fourth-

rank anisotropic elasticity tensor, and iu  the displacement vector. For 

convenience, matrices are represented by bold face letters in this paper and a 
comma followed by an index implies differentiation with respect to that index. 
The summation convention is invoked over repeated indices. The equilibrium 
equations can be rewritten in terms of displacements by substituting Eqs. (2) and 
(3) into Eq. (1),  
 , 0kij lkl juC   (4) 

Eqs. (2)–(4) are completed by adding following boundary conditions: 

 i iu u          on u (5) 

 i ij j it n t      on t (6) 

where  and i iu t are the prescribed boundary displacement and traction vector, 

respectively, in
 
is the unit outward normal to the boundary, and =u+ t is the 

boundary of the solution domain . 
     For the generalized two-dimensional deformation of anisotropic elasticity iu  

can be assumed to depend on 1x  and 2x  only. Based on this assumption, the 

general solution to (4) can be written as [8, 17]: 

 2Re{ ( )}, 2Re{ ( )}z z u Af Bfφ  (7) 

where  T
u u u1 2 3u = , ,  is the displacement vector,  T   1 2 3, ,φ  is the stress 

function vector, Re stands for the real part of a complex number, 

1 1 2 2 3 3( ) [ ( ),  ( ),  ( )]Tz f z f z f zf  is a function vector composed of three 

holomorphic complex function ( )f z  , 1,2,3  , which is an arbitrary function 
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with argument 1 2z x p x    and will be determined by satisfying the boundary 

conditions of the problems. p  are the material eigenvalues with positive 

imaginary part,  1 2 3A = a , a ,a  and  1 2 3B = b ,b ,b  are 3×3 complex matrices 

composed by the material eigenvector matrix associated with p , which can be 

obtained by the following eigen relations [7]: 
 pNξ ξ  (8) 

where N  is a 6×6 foundational elasticity matrix and ξ  is a 6×1 column vector 
defined by 

 
 

  
 

1 2
T

3 1

N N
N

N N
, 

 
  
 

a

b
ξ  (9) 

where -1 T -1 -1 T
1 2 3N = -T R , N = T , N = RT R - Q  and the matrixes Q , R and T are 

3×3 matrices extracted from ijklC  as follows 

 1 1 1 2 2 2, ,ik i k ik i k ik i kQ C R C T C    (10) 

The stresses can be obtained from the derivative of stress functions φ  as follows 
    1 22 Re{ ( )}, 2 Re{ ( )}i iz z   Lf Bf  (11) 

where 
  1 2 3 4L p p p p    1 2 3 4b , b , b , b  (12) 

2.2 Foundational solutions 

Fundamental solutions for general elements 
Consider an infinite homogeneous anisotropic elastic medium loaded by a 
concentrated point force (or line force for two-dimensional problems) 

1 2 3
ˆ ˆ ˆ ˆ( , , )p p pp applied at an internal point 1 2ˆ ˆ ˆ( , )x xx  far from the boundary. 

The Green’s function of this problem has been found to be [4, 7] 
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     The corresponding stress components can be obtained by 
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 (14) 

Fundamental solutions for special elements 
Consider an infinite anisotropic plate containing a traction-free elliptic hole 
under a concentrated force 1 2 3

ˆ ˆ ˆ ˆ( , , )p p pp applied at point 1 2ˆ ˆ ˆ( , )x xx , as shown 

in Figure 1. The Green’s function of this problem can be obtained by employing 
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the conformal mapping technique to map the elliptical hole into a unit circle. The 
expressions of the Green function has been derived to be [4, 7] 
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 (15) 

in which the unknown complex function vector ( )f z  is better to be expressed in 

terms of the arguments    

 

 
2 2 2 2 2 2 2 2ˆ ˆ
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z z a p b z z a p b
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 (16) 

where  
 1 2 1 2ˆ ˆˆ,     z x p x z x p x        (17) 

and 2a and 2b are the length of the major and minor axis of the elliptical hole. 
The corresponding stress components can be expressed as 
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 (18) 

where      2 2ˆ2 / , a ip b a ip b                . The fundamental 

solutions for an infinite anisotropic medium with a crack of length 2a can be 

obtained easily by letting b = 0 in Eq. (15).  
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Figure 1: Schematic of the infinite anisotropic plate with an elliptical hole. 



3 HFS-FEM formulations 

3.1 Assumed fields 

To solve the anisotropic problem governed by Eqs. (4)-(6) using HFS-FEM 
approach, the solution domain   is divided into a series of elements as was 
done in conventional FEM. For each element, two independent fields, i.e. intra-
element field and frame field, are assumed [18]. In this approach, the intra-
element displacement fields for a particular element e is approximated in terms 
of a linear combination of fundamental solutions of the problem as  

  1 2 3( ) ( ) ( )     ( , )
T

e sj eu u u   e eu(x) x x x N c x y  (19) 

where the matrix eN  and unknown vector ec  can be further written as  
* * * * *
11 1 12 1 11 12 13

* * * * *
12 1 22 1 12 22 23

* * * * *
13 1 32 1 13 32 33

( , ) ( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , ) ( , )

s s s

s s s

s s s

s s sn sn sn

s s sn sn sn

s s sn sn sn

u u u u u

u u u u u

u u u u u

 
 

  
 
  

e

x y x y x y x y x y

N x y x y x y x y x y

x y x y x y x y x y







(20) 

 11 21 31 1 2 3[ ]T
n n nc c c c c cec   (21) 

in which ns is the number of source points, x  and sjy  are respectively the field 

point and source point in the local coordinate system (X1, X2). The components 
* ( , )ij sju x y  is the fundamental solution, i.e. induced displacement component in i-

direction at the field point x  due to a unit point load applied in j-direction at the 
source point sjy  placed outside the element, which are given by Eq. (13) for 

general elements or Eq. (15) for special elements with an elliptical hole or crack. 
In our analysis, the number of source points is taken to be the same as the 
number of element nodes, which is free of spurious energy modes and can keep 
the stiffness equations in full rank, as indicated in [16]. The source point 

( 1, 2, , )sj sj ny  can be generated by [18]  

 0 0( )s c  y x x x  (22) 

where  is a dimensionless coefficient, 0x  is the point on the element boundary 

(the nodal point in this work) and cx  the geometrical centroid of the element (see 

Figure 2). Determination of  was discussed in [19] and =8 is used in the 
following analysis. 
     The corresponding stress fields can be expressed as  

  11 22 23 31 12

T      e e(x) T cσ  (23) 

where eT is a coefficient matrix with its components * ( , )ijk x y  given by Eq. (14) 

or Eq. (18) when ˆ
ip is selected to be (1,0,0)T , (0,1,0)T  and (0,0,1)T , 

respectively. As a consequence, the traction can be written as  

   σ1 2 3

T
t t t   e e e en nT c Q c  (24) 
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2a 2a

 

Figure 2: Special elements for elliptical hole or crack. 

     The unknown ec  in Eq. (19) and Eq. (23) may be calculated using a hybrid 

technique, in which the elements are linked through an auxiliary conforming 
displacement frame which has the same form as in conventional FEM (see Fig. 
2). Thus, the frame is defined as  

 
11

2 2

3 3

( ) ,       ( )e e e e

u

u

u

  
        

   
   

N

u x N d N d x

N


  


 (25) 

where the symbol “~” is used to specify that the field is defined on the element 
boundary only, eN is the matrix of shape functions, ed is the nodal displacements 

of elements. Taking the side 3-4-5 of a particular 8-node quadrilateral element 
(see Figure 2) as an example, eN

 
and ed can be expressed as  

 1 2 3e    N 0 0 N N N 0 0 0  (26) 

  11 21 31 12 22 32 18 28 38= 
T

e u u u u u u u u ud   (27) 

where the shape functions are expressed as  

 

0 0 0 0 0

0 0 , 0 0 0

0 0 0 0 0

i

i

i

N

N

N

   
       
     

iN 0





 (28) 

and 1N , 2N  and 3N  are expressed by natural coordinate [ 1,1]    

       2
1 2 3

1 1
,   1 ,       1,1

2 2
N N N

   
 

 
          (29) 
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3.2 Modified functional and element Stiffness matrix for HFS-FEM 

With the assumption of two distinct intra-element field and frame field for 
elements, we can establish the modified variational principle based on Eqs. (4)–
(6) for the hybrid finite element method of anisotropic materials [16]. In the 
absence of the body forces, the hybrid functional me for a particular element e is 

constructed as 

 
1

( )
2 e t e

me ij ij i i i i id t u d t u u d 
  

          (30) 

where the boundary e of the element e is  

 e eu et eI      and ,eu e u et e t         (31) 

and eI is the inter-element boundary of element e. Compared to the functional 

employed in the conventional FEM, the present hybrid functional is constructed 
by adding two integral terms related to the intra-element and element frame 
fields to guarantee the satisfaction of displacement continuity condition on the 
common boundary of two adjacent elements. To this end, performing a variation 
of m , one obtains 

 , [( ) ( )]
e et e

me ij i j i i i i i i i iu d t u d u u t t u u d      
  

             
 

(32) 

Applying Gaussian theorem, it can be demonstrated that the Euler equations for 
Eq. (32) result in Eqs. (4)–(6). In addition, the existence of extremum of 
functional (30) can be easily proofed by “second variational approach” as well. 
Therefore, we can conclude that functional (30) can be used for deriving hybrid 
finite element formulations. 
     Using Gaussian theorem and equilibrium equations, the functional in Eq. (30) 
can be simplified to final expression for the HT finite element model 

 
1

2 e e t
me i i i i i it u d t u d t u d

  
           (33) 

Substituting Eqs. (19), (24) and (25) into the above functional (33) yields the 
formulation as 

 
1

2
T T T

me e e e e e e e e    c H c c G d d g  (34) 

where 
 T d

e
e e e
 H Q N ,   T d

e
e e e
 G Q N ,   T

t
e e d


 g N t  (35) 

     To enforce inter-element continuity on the common element boundary, the 
unknown vector ce should be expressed in terms of nodal degrees of freedom de. 
The stationary condition of the functional me with respect to ce and  

de, respectively, yields 
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T
me

e e e e
e


   


H c G d 0

c
,  

T
Tme

e e e
e


  


G c g 0

d
 (36) 

from which the relationship between ce and de, and the stiffness equation can be 
obtained as 
 1

e e e e
c H G d ,   e e eK d = g  (37) 

where 1
e e e e

TK = G H G is the element stiffness matrix with symmetric 

properties. The numerical calculations for eH , eG and eg  can resort to the 

popular Gauss integration as used in FEM and BEM.   

4 Numerical examples 

In this section, two examples are presented to assess the accuracy and efficiency 
of the present method. In the examples shown below, L and W stand for the 
length and width of the plate, respectively; 2a and 2b are the lengths of the major 
and minor axis of the ellipse. In the computation, the infinite plate with an 
elliptical hole is modeled by a large square plate with L/W=1 and W/a =100 [20]. 

4.1 An anisotropic plate with an elliptic hole 

As shown in Figure 3, an infinite plate containing an elliptical hole is 
investigated in this example. A uniform tension of 0 =1 GPa is applied in 2x  

direction. The material parameters of the orthotropic plate are taken as 
El=11.8 GPa, E2=5.9 GPa, G12=0.69 GPa, v12= 0.071 [12]. In this analysis, it is 
not necessary to use lots of elements to capture the concentrated stress as done in 
the traditional FEM. A relatively coarse mesh can be employed and the elliptical 
hole can be considered by only one special element. The mesh configuration  
 

W

L

2a

2b

0

0

1x

2x

A

B

 

Figure 3: An orthotropic plate with an elliptic hole under tension and its mesh 
configuration. 
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with one 8-node special hybrid element and 48 8-node hybrid elements with a 
total of 176 nodes is shown in Figure 3. The effect of the locations of source 
points on the convergence and accuracy of the stress and displacements have 
been investigated in our previous work [18], which will be omitted in this paper. 
Figure 4 shows the variations of the stress concentration factors (SCF) of the 
plate with the increasing ratio b/a of the ellipse. It can be seen from Figure 4 that 
the SCF of the plate decreases along with an increase in the ratio b/a and the 
results calculated by HFS-FEM have a very good agreement with the BEM 
solutions [12].  
 

 

Figure 4: Variations of SCF with the ratio b/a of the elliptical hole. 

4.2 An anisotropic plate with a centre crack 

The extreme case of an elliptical hole (i.e. crack) is considered in this example. 
By letting the minor axis b approach to zero, an elliptical hole can be made into a 
crack of length 2a. The geometry and loading for this problem are the same as 
that in Figure 3 with b = 0 and L/W = 1. The plate is subjected to a uniform 
tensile stress 0 =1GPa in the x2-direction. The plate is composed of the 

orthotropic materials whose mechanical properties are E1 = 114.8 Gpa, E2 = E3 = 
11.72 Gpa, G12 = G13 = G23 = 9.65 Gpa, v12 = v13 = v23 = 0.21. The variation of 
the SIF KI with respect to the crack length a is shown in Figure 5. It can be seen 
 that the calculated KI by HFS-FEM also agree very well with those from Snyder 
and Cruse [21]. It can be concluded that the new HFS-FEM method is able to 
treat these two kinds of defects (elliptical holes and cracks) in a uniform scheme 
for facilitating the modelling of anisotropic materials with defects.   

5 Conclusions 

In this work a new hybrid finite element formulation (HFS-FEM) with special 
elements for elliptic hole/crack has been developed to provide an efficient  
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Figure 5: The variation of KI with the increasing crack length 2a. 

approach for stress analysis of anisotropic materials with defects. Since the 
special fundamental solutions used in our calculation have exactly satisfied 
the boundary conditions for the hole/crack as a priori, we can use only one 
special element to model the hole/crack region and there is no need to discretize 
the hole/crack boundary. This feature leads to a vast amount of mesh reduction 
and computational effort saving. The numerical examples for anisotropic 
composite plates with an elliptic hole or a crack were employed to assess the 
performance of the proposed method. Numerical results show that the present 
method can effectively capture the stress field around the elliptical holes/cracks 
by using much less meshes. It can be concluded that the present approach can be 
employed to effectively calculate the SCFs or SIFs in anisotropic materials with 
holes or cracks.  
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