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Abstract 

This study considers the numerical comparison on three treatments for 
eliminating the singularities of acoustic fundamental solutions in singular 
boundary method (SBM). The singular boundary method is a recent meshless 
boundary collocation method, which introduces the concept of source intensity 
factors to eliminate the singularity of the fundamental solutions. Recently, three 
treatments, the inverse interpolation technique (IIT), the semi-analytical 
technique with boundary IIT (SAT1) and the semi-analytical technique with 
integral mean value (SAT2), have been proposed to determine the source 
intensity factors for removing the singularities of acoustic fundamental solutions 
at origin. This study compares numerical efficiency and stability of these three 
approaches on two benchmark examples under two-dimensional exterior 
acoustic problems. 
Keywords: boundary collocation, singular boundary method, source intensity 
factors, singularity, acoustic fundamental solution. 

1 Introduction 

The singular boundary method (SBM) [1] is a recent meshless boundary 
collocation method, which introduces the concept of source intensity factor to 
regularize the singularities of fundamental solutions, in some literature it is also 
called the origin intensity factor. The SBM avoids singular numerical integrals in 

Boundary Elements and Other Mesh Reduction Methods XXXVI  15

 
 www.witpress.com, ISSN 1743-355X (on-line) 
WIT Transactions on Modelling and Simulation, Vol 56, © 2013 WIT Press

doi:10.2495/BEM360021



the boundary element method and circumvents the troublesome placement of the 
fictitious boundary in the method of fundamental solutions.  
     In the SBM, an inverse interpolation technique (IIT) has been first proposed 
to determine the above-mentioned source intensity factors of fundamental 
solutions. This SBM formulation has been successfully applied to interior and 
exterior Laplace [2–4], Poisson [5], Helmholtz [6] and elastostatic [7] problems. 
Later,  Gu  et al.  [8]  introduced  the desingularization of the subtracting and 
adding-back technique and proposed an improved singular boundary method 
(ISBM) for interior and exterior potential problems. Its main improvement is 
developing a semi-analytical technique (SAT1) to determine the source intensity 
factors without any inner sample nodes. The approach employs the null-field 
integral equations to evaluate the source intensity factors of Laplace fundamental 
solution on Neumann boundary. And then it uses the inverse interpolation 
technique with boundary source points to determine the source intensity factors 
of Laplace fundamental solution on a Dirichlet boundary. Then Fu et al. [9–11] 
used the relationships between Laplace and Helmholtz fundamental solutions to 
extend the ISBM to solve Helmholtz equations. Recently, another semi-
analytical technique (SAT2) has been proposed [12]. The SAT2 introduces the 
integral mean value approach to determine the source intensity factors of Laplace 
fundamental solutions on Dirichlet boundary. 
     This study will extend the SAT2 to determine the source intensity factors of 
the Helmholtz fundamental solutions, and then compares numerical accuracy and 
stability of these three approaches (IIT, SAT1 and SAT2) on 2D exterior 
acoustic problems. A brief outline of the paper is as follows. Section 2 describes 
three treatments for eliminating the singularities of acoustic fundamental 
solutions in the singular boundary method. In Section 3, the efficiency and 
accuracy of these three approaches are examined in 2D benchmark examples. 
Finally, Section 4 concludes this paper with some remarks. 

2 Three ways to calculate the source intensity factors in SBM 

The problem under consideration is the propagation of time-harmonic acoustic 
waves in a homogeneous isotropic acoustic medium D exterior to a closed 
bounded curve  , which can be described by the Helmholtz equation 

2 2( ) ( ) 0,         u x k u x x D    ,                                 (1) 

subjected to the boundary conditions 

       Du x u x  ,                                               (2a) 

 
( )       N

u x
q x q x


  

n
,                                  (2b) 
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where /k c  the wavenumber,   the angular frequency, c  the wave speed 
in the exterior acoustic medium D, and n  the unit outward normal on physical 
boundary. D  and N  represent the essential boundary (Dirichlet) and the 

natural boundary (Neumann) conditions, respectively, which construct the whole 
closed bounded curve D N    , and u is complex-valued amplitude of 

radiated and/or scattered wave (velocity potential or acoustic pressure) 

,           if radiation,

,     if scattering,

, if both,       

R T

S T I

R S T I

u u

u u u u

u u u


  
  

 

where the subscripts T, R and I denote the total, radiation and incidence wave, 
respectively. For the exterior acoustic problems, it requires guaranteeing the 
physical requirement that all scattered and radiated waves are outgoing. This is 
accomplished by imposing an appropriate radiation condition at infinity, which is 
termed the Sommerfeld radiation condition: 

1
(dim 1)

2lim 0
r

u
r iku

r





    
,                               (2c) 

where dim is the dimension of the acoustic problems, and 1i   . By utilizing 
single layer fundamental solutions, the SBM approximate solutions u(x) and q(x) 
of exterior acoustic problem (Eqs. (1) and (2)) can be expressed as follows 

 
 
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1

1,

, ,           \

, ,  
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j
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jj
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,            (3b) 

where N denotes the number of source points sj, j  the jth unknown coefficient, 

xn  the outward normal unit vector on the collocation points xm, the 2D 
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fundamental solutions      1
0, 4m j mjG x s iH kr ,  1

nH  is the nth order Hankel 

function of the first kind, the Euclidean distance 
2mj m jr x s  . If the 

collocation points and source points coincide, i.e., xm=sj, the well-known 
singularities are encountered. The SBM introduces the concept of the source 

intensity factors jj
SU  and jj

SQ  to avoid these singularities. Its key issue is how to 

determine these source intensity factors jj
SU  and jj

SQ . Fortunately, it is of interest 

to point out that the fundamental solutions of Helmholtz equation have the similar 
order of the singularities as the related fundamental solutions of Laplace equation 
[13]. The corresponding relationships can be represented by the following 
asymptotic expressions 

   0
1

, , ln ,    0
2 2 2m j m j mj

k i
G x s G x s r



        

  
,         (4a) 

   0, ,
,    0

m j m j
mj

x x

G x s G x s
r

 
 

 n n
,                    (4b) 

   0, ,
,    0

m j m j
mj

s s

G x s G x s
r

 
 

 n n
,                    (4c) 

where the Euler constant 0.57721566490153286  , sn  the outward normal 

unit vector on the source points sj, the 2D fundamental solution of the Laplace 

equation    0 ln 2mjG r   . Hence, we can introduce the existing approaches 

to determine the source intensity factors for the Laplace equation, and then 
implement the above-mentioned relationship to calculate the source intensity 
factors for the Helmholtz equation. In the following section, we will introduce 
three approaches to determine the source intensity factors for removing the 
singularities of acoustic fundamental solutions at origin. 

2.1 Inverse interpolation technique 

This section will introduce a simple numerical technique, called the inverse 
interpolation technique (IIT) [3, 6], to determine the source intensity factors for 
Laplace equations. Then we can use the relationships (4) to determine the source 
intensity factors for Helmholtz equations. In the first step, the IIT requires 
choosing a known sample solution uS0 of Laplace equations and placing some 
sample points yk inside the physical domain. It is noted that the sample points yk 
do not coincide with the source points sj, and the sample points number NK 
should not be fewer than the source node number N on the physical boundary. 
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By using the interpolation formula (3), we can then determine the influence 

coefficients j  and j  by solving the following linear equations 

      0 0, ,k j j S kG y s u y                                (5a) 

     0 0
,

.
k j S k

j
x x

G y s u y


               
n n

                           (5b) 

Replacing the sample points yk with the boundary collocation points xm, the SBM 
interpolation matrix (Eqs. (1) and (2)) can be written as 

   
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    (6b) 

Then the source intensity factors for the Laplace equation can be calculated by 

   0 0 0
1,

,       ,
j m

N
mm
S S m j m j m m j m D

j s x

U u x G x s x s x 
 

 
    
 
 

   (7a) 

   00
0

1,

,
       ,

j m

N
m jS mmm

S j m m j m N
x xj s x

G x su x
Q x s x 

 

     
  
 

n n
 (7b).  

Hence the source intensity factors for the Helmholtz equation can be represented 
as 
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0
1

ln ,   ,
2 2 2

mm mm
S S m j m D

k i
U U x s x



         

  
             (8a) 

0 ,       ,mm mm
S S m j m NQ Q x s x                                    (8b).  

2.2 Semi-analytical technique with boundary IIT (SAT1) 

This section will introduce a semi-analytical technique [8, 9] to calculate the 
source intensity factors. 

2.2.1 Source intensity factors on Neumann boundary conditions 

By adopting the subtracting and adding-back technique in Eq. (3b) at m jx s , 

we obtain 

     

       

     
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   
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   
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   
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 

 

n n

n n n

n n n
,

(9) 

where  0 ,I
m jG x s  denotes the fundamental solution of the interior Laplace 

equation, jm j mL L  , in which Lj is half length of the curve 1 1j js s   between 

source points sj-1 and sj+1 as shown in Fig. 1. Note that 1mm  . 

     According to the dependency of the outward normal vectors on the 
fundamental solutions of interior and exterior Laplace equations [8, 14], we have 
the following relationships 

   

   

0 0

0 0

, ,
,

, ,
,

I
m j m j

m j
s s
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G x s G x s
x s

 
   
  

 

 
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n n

n n

             (10a) 

and 
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   0 0, ,
0lim

j m

m j m j

x ss x

G x s G x s



  
  
  
 

n n
,                     (10b) 

 0

1

,1
IN

m j
m jm

m sj

G x s
V

L 


   

 n
                          (10c).  

If the boundary shape is of a straight line, Eq. (10b) is explicitly equal to zero 

since    x m s jx sn n  at all boundary knots. For an arbitrarily shaped smooth 

boundary, herein we assume that the source point sj approaches inchmeal to the 
collocation point xm along a line segment, then Eq. (10b) is tenable. In addition, 
Eq. (10c) is derived based on the discretization of the reduced full-fields 
equations [15]. With the help of Eqs. (4) and (10), Eq. (9) can be regularized as 

 
   0

1, 1,

, ,N N
m j m j

m j m jm m
x sj j m j j m

G x s G x s
q x V 

   

  
    
  
 

 n n
.       (11) 

     By contrast with Eq. (3b) at m jx s , we can obtain 

 0
0

1,

,N
m jjj jj

m jmS S
sj j m

G x s
Q Q V

 


    

 n
                    (12) 

which is the source intensity factors for Neumann boundary conditions in Eq. (3b). 
Unlike the first treatment, this method does not require the additional inner 
sample nodes. 

 

 

Figure 1: Schematic configuration of source points sj and the related curve 


1 1j js s  . 
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2.2.2 Source intensity factors on Dirichlet boundary conditions 

Then the source intensity factors 0
jj

SU  can be calculated by the inverse 

interpolation technique [8, 11]. This strategy chooses a sample solution 0u  of 2D 

Laplace equation, e.g., 0u x y c   , then 2N+1 linear equations are obtained 

with 2N+1 unknowns ( 0 , ,jj
jU c ) on N boundary source points and one inner 

point xI. 

   0 0 0
1,

, ,  
N

jj
m j m j m m j

j j m

u x G x s U c x s 
 

    ,             (13a) 

   00
0

1,

,
,  

N
m jm jj

j m m j
x xj j m

G x su x
Q x s 

 


  

 n n
,            (13b) 

   0 0
1

, ,  
N

I j I j I j
j

u x G x s c x s


   .                        (13c) 

Therefore, the source intensity factors jj
SU  in Eq. (3a) can be determined indirectly 

by calculating the source intensity factors 0
jj

SU  by using Eq. (8a). 

2.3 Semi-analytical technique with integral mean value (SAT2) 

This section will introduce a recently developed semi-analytical technique [12], 
which does not require the inverse interpolation technique. As with Section 
2.2.1, the regularized SBM formulation for Neumann boundary conditions (3b) 
can be expressed as follows 

 
   0

1, 1,

, ,N N
m j m j

m j m jm m
x sj j m j j m

G x s G x s
q x V 

   

  
    
  
 

 n n
.       (14) 

And 

 0
0

1,

,N
m jjj jj

m jmS S
sj j m

G x s
Q Q V

 


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 n
,                   (15) 

is the aforementioned source intensity factors for Neumann boundary conditions. 
Next the regularized expressions for Dirichlet boundary conditions (3a) can be 
performed using Sarler’s strategy [16], where the corresponding source intensity 
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factors are directly set as an average value of Laplace fundamental solution over 
line segments. This can be formulated as 

 00 2

1 1
, ln ,   

2
jj

m j m j m jS
m m

U G x s d x s d x s
L L 

       
s s

s s .      (16) 

Then the source intensity factors jj
SU  for Dirichlet boundary conditions can be 

calculated by using Eq. (8a). 

3 Numerical results 

In this section, the efficiency, accuracy and convergence of the above-mentioned 
three treatments (IIT, SAT1 and SAT2) in the SBM are implemented to solve 2D 
exterior acoustics problems. The numerical accuracy is measured by the relative 
root mean square errors (RMSE) Lerr(u), which is defined as 

     2 2

1 1

1 1
( ) ,

NT NT

k k

Lerr u u k u k u k
NT NT 

                  (17) 

where  u k  and  u k  are the analytical and numerical solutions at xi, 

respectively, and NT is the total number of test points in the interest domain. 
Unless otherwise specified, the inner sample nodes yk are uniform angular 
distribution on the circle with radius  1 2 kL  and the inner additional point 

xI=(0.5,0.5) for the SAT1 in all the following numerical cases. 

     Example 1: Scattering problem of a soft infinite circular cylinder (Dirichlet 
boundary condition). 

     We consider a plane wave cosikre   scattered by a soft infinite circular cylinder 
as shown in Fig. 2(a). The analytical solution of the scattering field Su  [17] is  

(1) (1)0
0(1) (1)1

0

( ) ( )
( , ) ( ) 2 ( )cos

( )( )
n n

S n
n n

J ka J ka
u r H kr i H kr n

H kaH ka
 




    .        (18) 

 

                 (a)                                              (b) 

Figure 2: Sketch of (a) the scattering problem for a soft infinite cylinder and 
(b) the radiation problem of a soft infinite irregular-shaped rod. 
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Figure 3: Convergence analysis Lerr(u) of the SBM with IIT, SAT1 and 
SAT2 for the scattering problem of a soft infinite cylinder with 

40ka  . 

     Fig. 3 shows the error analysis of the SBM with three treatments for the 2D 
scattering problem with 40ka  . The analytical solutions in this case are 
calculated by using the first 100 terms in the above series representation (18). 
The test points (NT=101) are uniform angular distribution on the circle with 
radius 1.2. It can be found that all of these three methods converge with the 
increasing boundary node number N. In this case, under the same number of 
boundary knots, the SBM with SAT1 provides better results than the SBM with 
IIT and SAT2, and the slope of its convergence curve is about -3. Moreover, the 
SBM with SAT2 has the slowest convergence rate, whose slope is about -1. 
While the SBM with IIT has the same convergence rate to the SAT1 with a 
modestly increasing boundary node number (N=10000), but it converges slowly 
with a further increasing boundary node number. This may result from the 
numerical instabililty of the IIT to calculate the source intensity factors. 

     Example 2: Radiation model for a soft infinite irregular-shaped rod (Dirichlet 
boundary condition). 
     Consider the radiation problem of a soft infinite irregular-shaped rod as 
shown in Fig. 2b. The analytical solution of the radiation field Ru  is 

(1)
4
(1)
4

( )
( , ) cos 4

( )
R

H kr
u r

H ka
  .                                      (19) 
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Figure 4: Convergence analysis Lerr(u) of the SBM with IIT, SAT1 and 
SAT2 for the radiation problem of a soft infinite irregular-shaped 
rod with 1ka  . 

     Fig. 4 shows the error analysis of the SBM with three treatments for a 2D 
radiation problem of a soft infinite irregular-shaped rod with 1ka  . The test 
points (NT=101) are uniform angular distribution on the circle with radius 
1.5 0.425 . It has the similar conclusions to Example 1, namely, the SBM with 

SAT1 has the best performance among these three treatments, the SBM with 
SAT2 converges very slowly. Numerical stability is very sensitive to the 
placement of sample nodes in the SBM with IIT. 

4 Conclusions 

This study makes the numerical comparison on three treatments for calculating 
the source intensity factors in the singular boundary method. Numerical results 
show that the SBM with SAT1 provides the best performance among these three 
methods, and the SBM with SAT2 converges very slowly. By employing the 
SBM with IIT, numerical stability is very sensitive to the placement of sample 
nodes. 
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