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Abstract 

The precorrected-FFT acceleration technique is successfully applied in the 
boundary element method for the simulation of 3-D acoustic radiation problems. 
The constant triangular element is employed in the simulation. The 
computational cost, the consumed memory and the accuracy of the current 
method are demonstrated and analyzed through the simulation of the acoustic 
radiation from a pulsating sphere. Both the surface and the exterior field 
dimensionless acoustic pressures are presented to show the precision of this 
method. 
Keywords: BEM, pFFT, acoustic radiation. 

1 Introduction 

Boundary element method (BEM) [1] is a very popular numerical approach. The 
origin of this method can be traced to 1960s. Compared with other numerical 
methods, such as the finite element method and the finite difference method, it 
has the advantages that mesh need only to be generated on the boundary and the 
boundary conditions at infinity can be automatically satisfied. Therefore, it is 
very suitable to simulate the exterior acoustic problems.  
     It is well-known that the final influence matrix of the conventional BEM is 
fully-populated. As a result, both the computational cost and the consumed 
memory are very expensive to solve large-scale problems by using the 
conventional BEM. To overcome these difficulties, some acceleration techniques 
were developed in the past decades. The BEM accelerated by the fast multipole 
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expansion method (FMM) [2–5] had been developed and applied to nearly all the 
fields that the conventional BEM can be employed. The BEM accelerated by the 
precorrected fast Fourier transform method (pFFT) [6] was widely applied as 
well [7–12]. In most cases, the constant boundary element was used in the pFFT-
BEM. Recently, two pFFT-BEMs with higher order boundary element [13, 14] 
were presented for the simulation of wave-body interactions. The pFFT 
algorithm is quite independent of the Green functions, even for highly oscillatory 
kernels [15, 16]. Therefore, the pFFT-BEM is very suitable for the simulation of 
wave propagation problems. Usually, the iterative solver based on the 
generalized minimal residual algorithm (GMRES) [17] is used together with 
these acceleration techniques to form the fast BEMs. Lately, the adaptive cross 
approximation (ACA) method [18] gets more and more attention and 
applications due to its easy implementation.  
     To implement the BEM, the computation of the weakly singular integrals, the 
strongly singular integrals and the hypersingular integrals [19–24] appearing in 
the boundary integral equations is indispensable. To date, a lot of research has 
been done on the computation of such kinds of singular integrals, especially the 
hypersingular integrals.  
     The BEM based on the Helmholtz integral equation (HIE) has long been 
employed to simulate acoustic problems [25–27]. In this paper, the development 
of the pFFT-BEM for the 3-D exterior acoustic radiation problems based on the 
HIE is presented. The motivation for such a development is due to the fact that 
the pFFT acceleration technique is relatively kernel independent and it is not 
very difficult to implement it based on the previous code for elastostatics [9], 
elastodynamics [15] and acoustic scattering [10, 12]. As usual, constant 
boundary element is applied in all the simulation.  
     This paper is organized as follows. Firstly, a brief introduction about BEM 
and its related topics is presented. Then, the pFFT-BEM for exterior acoustic 
radiation problems based on the HIE is developed. Next, an example of the 
pulsating sphere radiation is presented to validate the developed method and the 
code. The computational cost, consumed memory and accuracy of the pFFT-
BEM for acoustic radiation problems based on the HIE are analyzed and 
demonstrated. Lastly, some conclusions are drawn.   

2 The pFFT-BEM for acoustic radiation problems 

2.1 Boundary integral formulation for acoustic radiation problems 

The governing equation about the acoustic pressure   for the steady-state linear 

acoustics in the frequency domain is the well-known Helmholtz equation [21] 

 
 2 2 0,k     (1) 

where k  is the wave number. 
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Figure 1: Illustration of a vibrating structure. 

     Consider the 3-D acoustic radiation problem from a closed vibrating surface 
S  as shown in Figure 1. For this exterior problem, n


represents the inward unit 

normal vector. The symbol E  represents the exterior domain and the symbol D  
represents the interior domain. p  and q  are respectively the source point and 

the field point. 
     The Neumann boundary condition [21] on the surface S  can be expressed as  

,n
q

i v
n

 



                                          (2) 

where  represents the circular frequency;  represents the density of the 

acoustic medium and 
nv  denotes the normal velocity on the boundary. 

     Combining the Sommerfeld radiation condition [21, 28], an equivalent 
Helmholtz boundary integral formulation (HIE) about the acoustic pressure   

can be derived from eqn (1) by using the Green’s second identity as 

           ,
, ,k

k q q
q qS S

q G p q
c p p G p q dS q dS

n n


 

    
     

       
       (3) 

where the 3-D free-space Green’s function kG  for the steady state linear acoustic 

problems is given by 

  1
, , .

4

ikr

k

e
G p q r p q

r



                                (4) 

     In this equation, i represents the imaginary unit and r  is the Euclidean 
distance between the source point p  and the field point q . Since the triangular 

constant boundary element is applied in the code, the solid angle  c p  at the 

centroid of an element equals to 0.5 .  
     In the integral operator notations [21, 28], eqn (3) can be expressed as 

 1
,

2 k kI M L
n

                
                                (5) 
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where I represents the identity integral operator. For an arbitrary function  , the 

integral operators kL , kM  [28] are defined as 

     , ,k k q

S

L G p q q dS      

     ,
.k

k q
qS

G p q
M q dS

n
 

 
  

  
  

2.2 The precorrected-FFT algorithm 

If the integrand of a boundary integral can be expressed as a function of the form 
[12] 

      , , , ,if r p q r p q Q q                                   (6) 

then it can be computed by using the pFFT technique.  
     In the pFFT technique, a three-dimensional problem is firstly discretized into 
n surface elements. Then a rectangular parallelepiped is constructed to enclose it. 
It is subdivided into an array of small cubes so that each small cube contains 
only a few elements. The number of cubes is determined based on the balance 
between the accuracy and the efficiency. Based on these cubes, the near-field and 
far-field of each element can be determined. The near field of an element in one 
cube is composed of all the elements in the cubes just close to this cube and the 
far field is formed by all the other elements. Boundary integrals in the near-field 
are computed directly using the Gaussian quadrature. A 3 3 3   array of grid 
points is uniformly distributed on each cube. Then the source on an element is 
projected onto the grid points on the cube that containing this element. The 
projection is based on a polynomial interpolation. On these uniformly distributed 
grid points, the boundary integral has a piecewise-smooth discrete convolution 
form. It can be computed approximately using the discrete fast Fourier transform 
technique. After that, the boundary integral computed on the grid points is 
projected back onto the elements. In order to keep the accuracy, the near-filed 
interactions computed by this approximate method are removed and those 
computed by the direct method are added. Thus, the main steps [9, 12] in the 
pFFT-BEM can be summarized as: 
(1) Discretization of the problem; 
(2) Construction and superposition of a 3-D uniform grid on the discretized 

problem; 
(3) Determination of the near- and far-field for each panel; 
(4) Computation of the near-field interactions using the direct calculation; 
(5) Projection of the sources onto the surrounding grid points based on a 

polynomial interpolation; 
(6) Calculation of the grid-to-grid interactions using the discrete Fast Fourier 

Transformation; 
(7) Projection of the grid-to-grid interactions back to elements; 
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(8) Subtraction of the near-field interactions by the approximate method and 
summation of the near-field interactions by the direct calculation and far-
field contributions by the approximate method; 

(9) Finding the solutions using the iterative solver GMRES. 

2.3 Implementation of the HIE with the pFFT technique 

The near-field interactions are directly calculated using the Gaussian quadrature 
with 3 3  Gaussian points. A standard degenerate mapping or polar coordinate 
transformation is applied to eliminate the weakly singularity [29].  
     In the implementation of the pFFT algorithm, a key step is the calculation of 
the grid-to-grid interactions. In order to use the FFT technique, the grid-to-grid 
interactions should possess a discrete convolution form.  
     In eqn (5), the integrand of the boundary integral  kL n   does satisfy the 

form (6), therefore this boundary integral can be calculated using the pFFT 
algorithm directly. However, the integrand of the boundary integral  kM   does 

not satisfy the form (6). It can be rewritten as    , 1,2,3ki iM n i   [10, 12] 

   ,
.k i

ki q

S

G p q r
M q dS

r r
 

 
   
                            (7) 

Since the integrand of the boundary integral  ki iM n satisfies the form (6), each 

of these three boundary integrals can be calculated using the pFFT algorithm.  
     The main difference of the pFFT accelerated HIE for acoustic radiation and 
that for the acoustic scattering is the computation of the term related to the 
boundary conditions. 

3 Numerical examples 

To validate the fast BEM based on the pFFT accelerated Helmholtz integral 
equation (HIE), an example of the pulsating sphere acoustic radiation is 
simulated. In the simulation, the iterative tolerance of the GMRES iterative 
method is set as 410 . It will affect the computational cost and the consumed 
memory. A 3 3  Gaussian quadrature is applied in the computation of the near-
field interactions. The simulation is run in a Linux system on a PC with 
2.66 GHz of the Intel(R) Core(TM)2 Quad CPU and with 8 GB of the physical 
memory. 
     Consider acoustic radiation from a sphere of radius 1 a m  with a uniform 

radial velocity 0v . The analytical solution [21] of the acoustic pressure )(r  is 

given by 

 

0 1
ik r a( r ) a ika

e .
cv r ika




 


                               (8) 
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(a) 192 elements      (b) 49664 elements 

Figure 2: The sphere discretized by constant triangular surface elements. 
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Figure 3: The computational cost as a function of the number of elements. 

     To examine the efficiency and the required memory of the pFFT-BEM based 
on the HIE, simulation is conducted for fourteen discretizations starting from the 
coarse mesh with 48 triangular elements to the finest mesh with 150338 
triangular elements at the reduced frequency 1.50294ka  . For simplicity, only 
the discretizations with 192 and 49664 triangular elements are displayed in 
Figure 2. Except the case with 48 elements for which the solutions converge at 
the iteration step 2, all the other cases converge at the iteration step 4. The 
computational cost and the consumed memory as functions of the number of 
elements are respectively shown in Figures 3 and 4. For problem domains with 
small surface-to-volume ratios, the optimal order of the pFFT-BEM ( log )O n n  
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for the computational cost and ( )O n for the consumed memory [6, 11] can be 

achieved. For other problems, the computational cost of the pFFT-BEM is 
between ( log )O n n  and 1.5( log )O n n  [11]. Therefore, the lines corresponding to 

2( )O n , 1.5( log )O n n , ( log )O n n  and ( )O n are also plotted in these two figures 

for reference. Because the simulation with the coarse mesh of 48 triangular 
elements is actually calculated by the direct method in the pFFT-BEM, all these 
lines are shifted to start from the point of 192 triangular elements. The same as 
those shown in the cases of acoustic scatterings [12], the computational costs of 
the pFFT-BEM based on the HIE oscillates along the line ( log )O n n  slightly and 

they seem to piecewisely parallel to the lines 2( )O n or 1.5( log )O n n . Figure 4 

shows that the consumed memory oscillates along the line ( )O n  slightly.  
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Figure 4: The consumed memory as a function of the number of elements. 

     To validate the code and show that accuracy of the pFFT-BEM, comparison 
between the dimensionless surface acoustic pressures on the circle 0x   as 

1.50294ka   computed by the pFFT accelerated Helmholtz integral equation 
(HIE) and the corresponding analytical solutions is presented in Figure 5. Two 
discretizations with 19520 and 1503384 triangular elements are employed. The 
L2-norm errors between the numerical solutions found by the pFFT accelerated 
HIE and the corresponding analytical solutions are respectively 1.84% and 
1.16% for the discretizations with 19520 and 150338 elements. Although these 
errors are not too large, they are not as small as those we expected for the 
simulation with so many elements. This should be due to the fact that a 
nonuniqueness frequency exists near the reduced frequency 0ka   [21] for the 
boundary element method based on HIE. 
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Figure 5: Dimensionless surface acoustic pressures on the circle 0x   as a 
function of   at 1.50294ka  . 
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Figure 6: Dimensionless acoustic pressures on the circle  0, 1.5x r   as a 

function of   at 1.50294ka  . 
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     The exterior field solutions can be found using the direct method based on the 
numerical solutions found on the structural surface. Comparison between the 
dimensionless acoustic pressures on the circle  0, 1.5x r   as 1.50294ka   

computed by the pFFT accelerated Helmholtz integral equation (HIE) and the 
corresponding analytical solutions is presented in Figure 6. Similarly, two 
discretizations with 19520 and 1503384 triangular elements are employed. The 
L2-norm errors between the numerical solutions found by the pFFT accelerated 
HIE and the corresponding analytical solutions are respectively 0.049% and 
0.011% for the discretizations with 19520 and 150338 triangular elements. 

4 Conclusions 

A 3-D fast BEM based on the precorrected-FFT accelerated Helmholtz integral 
equation is developed for the acoustic radiation problems. The computational 
cost, consumed memory and accuracy of this method are demonstrated through 
the simulation of a pulsating sphere acoustic radiation. The same as those found 
in the acoustic scattering problems, the computational costs of the precorrected-
FFT accelerated Helmholtz integral equation oscillate along the line ( log )O n n  

slightly. The numerical results agree well with the corresponding analytical 
solutions both on the surface and in the exterior domain. 
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