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Abstract

The effect of either a single inclusion or groups of inclusions on crack propagation
has been studied effectively using symmetric Galerkin boundary elements
(SGBEM) and modified quarter-point crack tip elements. Typical results show that
an inclusion can decrease the crack-tip stress intensity as the crack approaches an
inclusion, followed by deflection of the crack. Interestingly, as the crack extends
beyond the inclusion there can also be an amplification of stress intensity. These
previous results have shown the great influence the presence of an inclusion may
have on crack extension behavior. Here, we examine the influence of an auxetic
particle on crack growth behavior. An auxetic material is a material which exhibits
a negative Poisson ratio, so they exhibit lateral expansion upon longitudinal tensile
loading, and also undergo lateral contraction under longitudinal compression. Such
materials can exist in cellular form, or along specific axes in certain crystals. The
objective of the present study is understanding the behavior of crack path and
predict the crack growth direction in materials reinforced with auxetic particles.
We will show the dramatic difference in crack path as compared to particles with
positive Poisson ratios by showing results for crack extension in identical specimen
geometries reinforced with typical (positive Poisson ratio) particles and auxetic
particles.

1 Introduction

Poisson’s ratio is defined as the negative of the ratio of lateral and axial strains
under axial deformation. Most common materials undergo a transverse contraction
when stretched in one direction; the magnitude of this transverse deformation is
governed by Poisson’s ratio. Poisson’s ratio has two theoretical limits for a linear
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elastic, isotropic material: −1 ≤ ν ≤ 0.5. The lower limit, ν → −1, is required
for the strain energy to be a positive definite function (see, for example, [1]) while
the upper limit, ν → 0.5, represents the incompressible limit for the material. For
anisotropic solids, no such limits exist as discussed in [2].

A material that exhibits a negative Poisson’s ratio is called auxetic: the material
expands laterally upon longitudinal tensile loading and contracts laterally under
longitudinal compression. A recent review article by [3] summarizes much of the
state of the art as to current understanding of both natural and man-made auxetic
materials. Some examples are silicon polymorphs such as those discussed in [4],
zeolites as discussed in [5], and silicates as studied in [6]. Additionally, auxetic
behavior can be created in foams and similar materials by varying the geometric
structure, see [7]. Auxetic behavior has also been observed to occur locally on the
nanoscale in certain materials as discussed in [8].

The motivation for the present paper is to investigate problems involving crack
extension near auxetic particles. Of particular interest are the conditions required,
in terms of elastic constants, for a crack to either be deflected from or attracted
to an auxetic particle. Knowledge of such conditions may suggest potential
toughening strategies in brittle materials reinforced with auxetic particles. We
will use a symmetric Galerkin boundary element method for our crack extension
simulations. We first verify our simulations by performing crack extension studies
near isotropic inclusions, and compare our results with results available in the
literature for these problems (for example, in [9, 10]). We then investigate crack
extension when the particle is auxetic, and present results in terms of elastic
modulus mismatch for attracting or deflecting the crack from the particle. Finally,
we investigate the behavior of the mode-I and mode-II stress intensity factors as
the crack approaches the particle.

2 Crack extension near a particle

The general problem of a crack approaching a particle (or inclusion) is shown in
Figure 1.

With reference to the figure, we will useEp and νp for the Young’s modulus and
the Poisson’s ratio for the particle, and Em and νm those for the matrix material.
Both materials are considered isotropic, and we will be interested in the crack
extension behavior for various ratios of the elastic moduli as νp becomes negative.
We consider the particle to be circular, and perfectly bonded to the matrix material,
so at the matrix-particle interface we have

upr = umr , upθ = umθ and σprr = σmrr, σprθ = σmrθ

where ur, uθ are displacement components and σrr, σrθ are stress components in
polar coordinates, and the superscripts p and m indicate the particle and matrix,
respectively.

The general problem of a crack interacting with a particle has been studied
analytically both for isotropic materials (see, for example, [11–13]) and for
anisotropic problems (see, for example, [14]).
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Figure 1: Crack approaching a particle.

The most relevant to the study reported here is the paper by [15] where the
problem of a crack approaching either a coated or uncoated inclusion was studied.
The authors found that the Poisson’s ratio of the different phases (matrix and
inclusion) could have a significant effect on the crack trajectory. For a crack
approaching an uncoated elastic inclusion, the authors concluded that by simply
modifying the Poisson ratio mismatch the rate at which the crack propagates, and
the crack deflection/attraction mechanism can be controlled. We note that [15] only
considered positive values for the Poisson ratio.

3 Fracture analysis by the SGBEM

The symmetric Galerkin formulation for boundary integral equations in two-
dimensional isotropic linear elastostatics has been extensively reported on in the
literature and we will not review it here (see, for example, the book by [16]).
The SGBEM has several advantages for crack-extension problems [10]: the
formulation yields a symmetric coefficient matrix; no subdomains are required
to solve fracture problems; no smoothness requirements are needed on the
displacements for evaluating the hypersingular integrals; and a smoother solution
is obtained near geometric discontinuities.

We will use three-noded quadratic elements for the boundary element
calculations reported here. We approximate both the boundary and the boundary
functions using this particular interpolation. Employing the parameter space t ∈
[0, 1], and defining t1 = 0, t2 = 1/2 and t3 = 1, the shape functions are defined
as

ψ1(t) = (1− t)(1− 2t), ψ2(t) = 4t(1− t), ψ3(t) = t(2t− 1). (1)
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The approximate representations of the boundary and boundary functions are then
given by

αi =
3∑
`=1

ψ`(t)α
`
i (2)

where αi can be the boundary displacement ui, the boundary traction ti, or the
boundary geometry xi, or yi. α`i is the nodal value of αi.

Let the elastostatic problem be posed in the domain Ω with outer boundary
Γ = ∂Ω. Further, let the portion of the outer boundary with displacement boundary
conditions be Γu and the portion of the boundary with traction boundary conditions
be Γt, so Γ = Γu ∪ Γt. If a crack of boundary Γc is added to the domain, the new
total boundary becomes Γ∗ = Γ∪Γc. The crack is composed of two symmetrically
loaded surfaces Γ+

c and Γ−c which are initially coincident. Let Γ∗t = Γt + Γ+
c . In

this case, the displacement and traction boundary integral equations (BIEs) are
written as

U∗k (P ) = Uk (P ) +

∫
Γ+
c

Tkj(P,Q) ∆uj(Q) dQ = 0 (3)

T∗k (P ) = Tk (P )

+ n+
` (P )

∫
Γ+
c

Skj`(P,Q)∆uj(Q) dQ = 0 (4)

where Tkj and Skjl are the usual Kelvin kernels used in boundary element analysis,
P,Q are the source and field point locations, respectively, and n+

` is the outward
normal vector to Γ+

c . In these equations, the displacement jump vector ∆uj across
the crack surfaces is used as the unknown on the crack. As a result, only one
crack surface, e.g., Γ+

c , needs to be discretized. It is well known that the traction
boundary integral equation, eq. (4), is essential for treating crack geometries.

The use of ∆uj as the unknown on the crack as mentioned above is needed for
obtaining a symmetric coefficient matrix. The symmetric-Galerkin formulation is
given by ∫

Γu

ψk (P ) U∗k (P ) dP = 0 (5)

∫
∗
Γt

ψk (P ) T∗k (P ) dP = 0 (6)

For standard fracture analysis problems, wherein the boundary condition on
the crack is a specified traction, the symmetric-Galerkin procedure is remarkably
simple: the above prescription (writing the traction equation on the crack surface)
retains the symmetry, with the proviso that the unknowns on the fracture surface
are now the jump in displacement, and the complementary variable is the sum of
the known tractions. See for example, [17] and [18].
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The important detail that requires discussion is the crack front treatment. As is
well known, in linear elastic fracture mechanics the opening displacement at the
crack front is non-analytic, behaving as r1/2, where r is the distance to the tip.
Obtaining accurate stress intensity factors therefore requires that this behavior is
incorporated into the numerical model. [19] and independently [20], provided an
easy way to do this: they showed that by moving the mid-node coordinates (x2, y2)
three fourths of the way towards the tip, the parameter t becomes

√
r/L, with L

the distance from (x1, y1) to (x3, y3). As a consequence, the leading order term in
∆ujk at t = 0, which is t, is the correct square root of distance. Note however, that
the next term, which is t2, is r/L. Following [21] this term should vanish, and the
modification presented below replaces this term with (r/L)3/2.

For the new approximation, we keep the representation of Γ(t) so that the
property t ≈

√
r remains, and the interpolation of the geometry remains quadratic.

However for the crack opening displacement (COD, the difference in displacement
on the two sides of the crack), we define new shape functions by adding a cubic
term:

ψ̂2(t) = −8

3
(t3 − t), ψ̂3(t) =

4

3
(4t3 − t), (7)

This additional contribution accomplishes the cancelation of the t2 ≈ r term,
without disturbing the interpolation, i.e., ψ̂`(tm) = δ`m.

The results reported in this paper employ the Displacement Correlation
Technique (DCT) to compute the mode-I and mode-II stress intensity factors,
KI ,KII . With the modified quarter-point element, accurate results can be
achieved, even with this very simple evaluation method. The general expression
for the stress intensities by means of the DCT technique are

KI =
µ

κ+ 1
lim
r→0

√
2π

r
∆un

KII =
µ

κ+ 1
lim
r→0

√
2π

r
∆ut (8)

where L is the crack length and ∆un and ∆ut are the normal and tangential
components of the displacement jump vector, respectively, κ = 3 − 4ν for plane
strain and κ = 3−ν

1+ν for plane stress. As discussed in [22], with the modified
quarter-point these become

KI =
µ

3(κ+ 1)

√
2π

L
(8∆un(B)−∆un(C)

KII =
µ

3(κ+ 1)

√
2π

L
(8∆ut(B)−∆ut(C) (9)

where node B is at the quarter-point and node C is at the far end of the element,
away from the crack tip. Thus, KI ,KII are given directly in terms of the nodal
values of the crack opening displacement on the crack tip element.
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In order to extend the crack, a crack extension criterion must be selected. Here,
we use the maximum principal stress criterion of [23] where the crack grows in
a direction perpendicular to the maximum principal stress. The crack extension
angle, θc can be calculated from the condition σrθ = 0 ahead of the crack as

KI sin θc + KII (3 cos θc − 1) = 0 (10)

The crack extension simulation can proceed in a straightforward manner by
performing the SGBEM analysis, computing KI ,KII from eq. (9), computing θc
from eq. (10), then extending the crack by a small amount ∆a in the direction of the
crack extension. The crack extension is accomplished by adding a new modified
quarter point element to the tip of the crack, and reverting the previous crack-
tip element to a standard element. For the simulations reported on here, crack
extension will only occur in the matrix material, we terminate our calculations
if the crack impinges on an interface due to the increased complexity of the
crack-tip stress field. As noted in [10], the SGBEM with modified quarter-point
crack elements is capable of producing highly accurate results for both crack
path and stress intensities, even when the crack tip is extremely close to interface
boundaries.

4 Effect of a single auxetic particle on the crack path

In order to validate our analysis, we will use a problem geometry identical to
that used in [10], see Figure 2, and benchmark our analysis against results for
non-auxetic particles. With reference to the figure, we will use L = 0.150 m and

Figure 2: Three-point bend specimen.

h = 0.04 m in our calculations. The origin of coordinates is located at the crack
tip, and the initial crack length is h/4. The changes in crack length in the x and
y directions are normalized with respect to the half-length L/2 and the height of
the beam, h, respectively. The particle radius is denoted by rp which is selected to
be very small (rp = 0.001 m). The particle is centered vertically in the beam but
offset from the crack path an amount x = −rp from the y-axis.

204  Boundary Elements and Other Mesh Reduction Methods XXXV

 
 www.witpress.com, ISSN 1743-355X (on-line) 
WIT Transactions on Modelling and Simulation, Vol 54, © 2013 WIT Press



We first consider non-auxetic particles, with νp/νm = 1, and compute the crack
path whenEp/Em varies from 2 to 16. We use 193 quadratic elements on the outer
boundary for this problem, 64 quadratic elements for the particle, and initially 10
elements for the crack. We take crack extension increments of ∆a = 0.03 mm.
These values provided good agreement with published results. The results for the
crack path are shown in Figure 3, where the results from [10] are also plotted, but
are directly on top of the results of our calculations. As such, we are confident in
the accuracy of the results for the subsequent analyses reported here. Note in the

Figure 3: Comparison of results with [10] for non-auxetic particle-crack
interaction, νp/νm = 1. Note that the horizontal scale is expanded to
emphasize the crack path.

figure that for 2 ≤ Ep/Em ≤ 16 the crack is always deflected away from the
particle when νp/νm = 1 with the amount of deflection increasing with Ep/Em.
It was also noted in [10] that the ratio νp/νm only has a slight influence on crack
deflection when Ep/Em is large, but has a pronounced effect on the crack path at
lower values of Ep/Em. This is consistent with the results reported in [15].

We next perform an analysis similar to our benchmark analysis, but the particle
is taken to be auxetic: νp/νm = −1. We investigate the effects of the mismatch
in Young’s modulus on crack extension by again varying Ep/Em from 2 to 16.
Our simulation results are shown in Figure 4. In contrast to the results shown
in Figure 3 for the non-auxetic particle, we see that for lower values of Ep/Em
(Ep/Em = 2, 4) the auxetic particle actually attracts the crack. When the particle
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is stiffer than the matrix material (Ep/Em = 8, 16) the crack is deflected away
from the particle as it is in the case of the non-auxetic particle.

Figure 4: Crack extension near an auxetic particle, νp/νm = −1.Note that the
horizontal scale is expanded to emphasize the crack path.

5 Summary

We employed a symmetric Galerkin based boundary element method to analyze
crack extension near an auxetic particle. We found that the crack extension
behavior can be dramatically different near an auxetic particle when compared
to extension behavior near a non-auxetic particle. For values of Ep/Em = 2, 4
we found that the crack was attracted to the particle when νp/νm = −1, yet
when νp/νm = 1 the crack is deflected away from the particle. We also found
that when Ep/Em = 8, 16 the crack was deflected away from the particle when
νp/νm = ±1. This suggests strategies for pinning extending matrix cracks by
employing auxetic particles that tend to attract the crack. Indeed, we found that a
soft particle (Ep/Em = 0.5) will attract the crack when νp/νm = ±1, but if the
particle was hard (Ep/Em = 0.5) the crack was only attracted when νp/νm = −1.
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