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Abstract

A method for the inverse scattering analysis for an elastic half space is developed
in this article. The method is based on the fast volume integral equation developed
by the author, in that the Krylov subspace is constituted by a fast method without
deriving the coefficient matrix for the integral equation. The equation for the
inverse scattering analysis obtained from the volume integral equation is for
reconstructing fluctuations of the medium from observed scattered waves of the
finite region at the free surface. The linearization for the equation is carried out by
the Born approximation. The Tikhonov regularization method is also employed to
have the iterative solution converge. Several numerical calculations are performed
to verify the accuracy of the reconstruction of the wave field as well as the effects
of the regularization method.
Keywords: inverse scattering problem, elastic half space, fast method, volume
integral equation, Tikhonov regularization method.

1 Introduction

Identification of fluctuations of the wave field embedded in a homogeneous elastic
half space from observed scattered waves is an important task in the field of
earthquake engineering, seismology, and site characterization. The task for the
analysis of identifying the fluctuations from the scattered waves is known as the
inverse scattering analysis. There has already been vast literature concerning the
inverse scattering analysis. For example, Colton and Kress [1] reported a survey of
a vast number of articles on forward and inverse scattering analyses. They reported
methods for acoustic and electromagnetic wave propagation based on the theory
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of operators. Colton et al. [2] presented a linear sampling method for the inverse
scattering analysis of electromagnetic wave field by means of the far field operator.
Fata and Guzina [3] proposed the linear sampling method by defining a near field
operator to identify the scattering object hidden in an elastic half space.

In this article, a method for the inverse scattering analysis is developed by means
of the fast volume integral equation method proposed by the author first [4, 5].
The advantages of the fast volume integral equation method are in that the Krylov
subspace to obtain the solution of the integral equation can be constructed by the
fast algorithm without deriving the coefficient matrix. Furthermore, the volume
integral shows the relationship between the fluctuation of the wave field and the
scattered waves directly, which enables the direct formulation for the inverse
scattering analysis. In this article, several numerical examples are presented to
show the results of the inverse scattering analysis based on the formulation.

2 Formulation for the inverse scattering analysis

2.1 Concept of the analysis and basic equations

Figure 1 shows the concept of the problem defined in this article. A point source
is applied to a surface of an elastic half space. The time dependency of the point
source is exp(iωt), where ω is the circular frequency and t is the time. The incident
wave is propagating toward the fluctuation of the medium and scattered waves
are caused due to the interaction between the scattered waves and the fluctuation
of the medium. The scattered waves are observed at the finite region of the free
surface. The task of this article is to reconstruct fluctuations of the medium from
the observed scattered waves.

For the mathematical expression of the fluctuations of the medium, the Lamé
constants and the mass density for the wave field in this article is denoted by

λ(x) = λ0 + λ̃(x)

µ(x) = µ0 + µ̃(x)

ρ(x) = ρ0 + ρ̃(x), (x ∈ R3
+) (1)

where λ0, µ0 and ρ0 are the back ground Lamé constants and mass density,
respectively, and λ̃, µ̃ and ρ̃ are their fluctuations. Note that x is the position in
the elastic half space. A Cartesian coordinate system is used to describe the wave
field. For example, the components of the position vector are expressed as

x = (x1, x2, x3) ∈ R2 × R+ = R3
+ (2)

where x3 is the vertical coordinate and x3 = 0 denotes the free surface of the wave
field. The summation convention is applied to the subscript indices.

The governing equation used for the forward scattering problem is given by
(
Lij + δijρ0ω

2
)
uj(x) = Nij(x)uj(x)− Fiδ(x− xs) (3)
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Figure 1: concept of the analyzed model
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are expressed as

x = (x1, x2, x3) ∈ R2 × R+ = R3
+ (2)

where x3 is the vertical coordinate and x3 = 0 denotes the free surface of the
wave field. The summation convention is applied to the subscript indices.

The governing equation used for the forward scattering problem is given
by (

Lij + δijρ0ω
2
)
uj(x) = Nij(x)uj(x) − Fiδ(x − xs) (3)

where ui is the total displacement wave field, δij is the Kronecker delta, ω
is the circular frequency, Lij is the operator constituted by the back ground
Lamé constants such that

Lij = (λ0 + µ0)∂i∂j + δijµ∂2
k (4)

Nij is the operator describing the fluctuation of the medium defined as

Nij = −(λ̃ + µ̃)∂i∂j − δij µ̃∂2
k (5)

− ∂iλ̃∂j − δij∂kµ̃(x)∂k − ∂j µ̃(x)∂i − δij ρ̃(x)ω2 (6)
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constants such that
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k (4)

Nij is the operator describing the fluctuation of the medium defined as

Nij = −(λ̃+ µ̃)∂i∂j − δijµ̃∂2
k (5)

− ∂iλ̃∂j − δij∂kµ̃(x)∂k − ∂j µ̃(x)∂i − δij ρ̃(x)ω2 (6)

δ(·) is the Dirac function, xs is the position of the point source and Fi is the
amplitude of the point source. The boundary condition for the wave field is denoted
by

Pijuj = 0, at x3 = 0 (7)

where Pij is the operator given by

[Pij ] =



µ0∂3 0 µ0∂1

0 µ0∂3 µ0∂2

λ0∂1 λ0∂2 (λ0 + 2µ0)∂3


 (8)

At this point, let us define the inverse scattering analysis of this article mathe-
matically. Let vi(x)|Ω be the scattered wave observed at the finite region Ω set at
the free surface.

Definition 1 The inverse scattering analysis is to reconstruct λ̃(x), µ̃(x) and ρ̃(x),
(x ∈ R3

+) from the information of vi(x)|Ω, (x ∈ Ω), incident wave field and
Gij(x, y), (x, y ∈ R3

+), where Gij(x, y) is the Green’s function of the back
ground structure of the wave field.
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2.2 Fast volume integral equation method

The solution of Eq. (3) together with the boundary condition shown in Eq. (7) can
be expressed by the volume integral equation such that

vi(x) = −
∫

R3
+

Gij(x, y)Njk(y)fk(y)dy

−
∫

R3
+

Gij(x, y)Njkvk(y)dy (9)

where vi is the scattered wave field and fk is the incident wave field which is given
by,

fk(x) = Gkj(x, xs)Fj (10)

and the relationship between the scattered wave field and the total wave field is

ui(x) = vi(x) + fi(x), (x ∈ R3
+) (11)

The fast volume integral equation method employs the fast generalized Fourier
and its inverse transforms, whose mathematical forms are denoted by

(
Uijvj

)
(ξ) =

∫

R3
+

Λ∗ji(ξ, x)vj(x)dx

(
U −1
ij v̂j

)
(x) =

∫

R2

∑

ξ∈σp

Λij(ξ, x)v̂j(ξ)dξ1dξ2

+

∫

R2

∫ ∞

ξr

Λij(ξ.x)v̂j(ξ)dξ3dξ1dξ2 (12)

where Uij and U −1
ij are the operators for the generalized Fourier and its inverse

transforms, respectively, Λij is the kernel of the transform obtained from the
following eigenvalue problem:

LijΛjk(ξ, x) = −µ0ξ
2
3Λik(ξ, x)

PijΛjk(ξ, x) = 0, at x3 = 0 (13)

and ξ is the point in the wavenumber space whose components are

ξ = (ξ1, ξ2, ξ3) ∈ R3
+ (14)

In addition, ξr in Eq. (12) is given as

ξ2
r = ξ2

1 + ξ2
2 (15)

and σp is the subset of the wavenumber space defined by

σ = {ξ ∈ R3
+ | F (ξ) = 0} (16)
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where F (ξ) is related to the Rayleigh function such that

F (ξ) = (2ξ2
r − ξ3)2 − 4ξ2

rνγ (17)

Note that ν and γ is the function of ξ given as

ν =
√
ξ2
r − ξ2

3

γ =
√
ξ2
r − ξ2

3(cT /cL)2 (18)

where cT and cL is the S and P wave velocities, respectively.
The application of the generalized Fourier transform to the volume integral

equation shown in Eq. (9) leads to

v̂i(ξ) = −ĥ(ξ)UijNjkfk

− ĥ(ξ)UijNjkU
−1
kl v̂l(ξ) (19)

where
ĥ(ξ) =

1

µ0ξ2
3 − ρ0ω2 + iε

(20)

and v̂ is the generalized Fourier transform of v. Note that ε in Eq. (20) is the
infinitesimally small positive real number. Equation (19) can be solved by means
of the Krylov subspace method. During the iterative procedure, it is possible to
introduce the fast algorithm for the generalized Fourier transform. As a result, a
fast method for the volume integral equation method can be established for the
forward scattering analysis.

2.3 Method for the inverse scattering analysis

We are in a stage for the formulation of the inverse scattering analysis. It is not
very difficult to rewrite Eq. (9) into the equation that describes the relationship
between the fluctuation of the wave field and scattered waves, which is as follows:

vi(x) = −
∫

R3
+

Gij(x, y)Mjk(f1, f2, f3, y)qk(y)dy

−
∫

R3
+

Gij(x, y)Mjk(v1, v2, v3, y)qk(y)dy (21)

where qk is the states vector describing the fluctuation of the wave field such that:

(qk(y)) = (λ̃(y), µ̃(y), ρ̃(y)), (y ∈ R3
+) (22)

and Mjk is the operator defined as

Mj1(f1, f2, f3, y) = −∂j∂kfk − ∂kfk∂j
Mj2(f1, f2, f3, y) = −∂j∂kfk − ∂2

kfj∂j − ∂kfj∂k − ∂jfk∂k
Mj3(f1, f2, f3, y) = −ω2fj (23)
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The explicit form of Mjk(v1, v2, v3, y) would be clear from Eq. (23). Note that
Eq. (21) is the non-linear equation in terms of qk, sinceMjk(v1, v2, v3, y) depends
on qk. Therefore, for simplicity, the Born approximation is applied to Eq. (21)
to linearize the equation for the inverse scattering analysis. Furthermore, the
equation for the inverse scattering analysis should be the relationship between
the fluctuation of the medium and the observed scattered waves. As a result, the
equation for the inverse scattering analysis becomes as

vi(x)|Ω = −χΩ(x)

∫

R3
+

Gij(x, y)Mjk(f1, f2, f3, y)qk(y)dy (24)

where χΩ is the characteristic function defined by

χΩ(x) =

{
1 x ∈ Ω

0 x /∈ Ω
(25)

To solve Eq. (24) without deriving the coefficient matrix, the generalized Fourier
and its inverse transforms are applied to this equation. The result is

vi(x)|Ω = −χΩ(x)U −1
ij ĥ(ξ)UjkMkl(f1, f2, f3, x)ql(x) (26)

It may be true that Eq. (26) is the equation for the inverse scattering analysis
to which the fast method is applicable, there is, however, a problem in the
convergence of the solution in the case that Krylov subspace iteration method is
employed [6]. In order to resolve the problem of the convergence of the solution,
the Tikhonov regularization method [1] is applied to Eq. (26). The form of the
equation to which the Tikhonov regularzization method is applied is as follows,

A∗ijvj(x)|Ω = (αδij +A∗ikAkj)qj(x) (27)

where α is the regularization parameter, Aij is the operator given as

Aij = −χΩ(x)U −1
ij ĥ(ξ)UjkMkl(f1, f2, f3, x) (28)

and A∗ij is the adjoint operator for Aij satisfying the following equation:

(ϕi(x), Aijqj)Ω = (A∗jiϕi(x), qj)R3
+

(29)

Note that (·, ·)Ω and (·, ·)R3
+

is respectively defined as

(f, g)Ω =

∫

Ω

f∗(x)g(x)dx1dx2, f, g ∈ L2(Ω) (30)

(f, g)R3
+

=

∫

R3
+

f∗(x)g(x)dx1dx2dx3, f, g ∈ L2(R3
+) (31)

In the following numerical examples, Eq. (27) is used for the inverse scattering
analysis.
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3 Numerical examples

3.1 Target model

Results of the forward scattering analysis is necessary to carry out the
inverse scattering analysis. The target model is shown in Fig. 2, in which
the fluctuation of the wave field and the location of the point source is
shown. In Fig. 2, the fluctuation of the Lamè constants λ̃ and µ̃ is shown.
The fluctuation of the mass density is set here by ρ̃ = 0. , In addition, the
back ground Lamé constants are λ0 = 4 GPa and µ0 = 2 Gpa and the back
ground mass density is ρ0 = 2 g/cm3 for the target model. The amplitude
of the excitation force is 1.0×1010 N, whose direction is vertical with the
frequency of 1 Hz. Therefore the wavelength of S and P waves are 1 km
and 2 km respectively. In Fig. 2, λT denotes the S wavelength. The number
and the interval of grids to discretize the integral equation nj = 512 and
∆xj = 0.176 km, where nj and ∆xj , (j = 1, 2, 3) denotes the number of
grids and the interval of grids in the −th component.

Figure 3 shows the amplitude of the scattered waves obtained from the
forward scattering analysis. The amplitudes of the waves are shown at the
free surface as well as at the vertical plane. It is found from Fig. 3 (a)
that the large amplitude of the waves can be observed from just above

Figure 2: Target model for the inverse scattering analysis.
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Figure 3: Results of the forward scattering analysis. Amplitudes of the scat-
tered waves are shown.

the fluctuation. The forward scattering is also found to be outstanding.
According to the Fig.3 (b), the high amplitude areas can be recognized
along the free surface and toward the downward direction in the forward
side. These high amplitude areas are corresponding to the Rayleigh wave
and the body waves. The results of the forward scattering analysis are found
to well explain the phenomena of wave propagation in an elastic half space.

3.2 Inverse scattering analysis

Based on the results of the forward scattering analysis, the fluctuation of
the wave field is reconstructed. The picked up data of scattered wave used
to reconstruct the fluctuation is shown in Fig. 4.

The Bi-CGSTAB method is empoyed to solve Eq. (27). Figure 5 shows
the convergence properties of the solution of Eq. (27) in the case that
α = 1.0×10−6. The horizontal axis of Fig. 5 is the number of iterations and
the vertical axis is the relative error. It is found from Fig. 5 that the conver-
gene of the solution becomes slower as the iteration number increases. The
following results of the reconstruction of the fluctuation are at the iteration
number of thirty. The relative error at this iteration number is about 0.003.

Figures 6 and 7 show the comparisons of the target and the results of the
reconstruction of µ̃ and λ̃ at the depth of x3/λT = 2, respectively. It is found
from Figs. 6 and 7 that the reconstructed amplitudes of the fluctuations are
almost equal to the targets. The spatial spreads of the reconstructed results
are, however, different from the targets. The reconstructed results are shifted

Figure 3: Results of the forward scattering analysis. Amplitudes of the scattered
waves are shown.
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Figure 6: Results of the reconstruction of µ̃ at the depth of x3/λT =2.
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Figure 5: Convergence properties of the solution by Bi-CGSTAB method.

the waves can be observed from just above the fluctuation. The forward scattering
is also found to be outstanding. According to the Fig. 3(b), the high amplitude
areas can be recognized along the free surface and toward the downward direction
in the forward side. These high amplitude areas are corresponding to the Rayleigh
wave and the body waves. The results of the forward scattering analysis are found
to well explain the phenomena of wave propagation in an elastic half space.

3.2 Inverse scattering analysis

Based on the results of the forward scattering analysis, the fluctuation of the wave
field is reconstructed. The picked up data of scattered wave used to reconstruct the
fluctuation is shown in Fig. 4.

The Bi-CGSTAB method is employed to solve Eq. (27). Figure 5 shows the
convergence properties of the solution of Eq. (27) in the case that α = 1.0×10−6.
The horizontal axis of Fig. 5 is the number of iterations and the vertical axis is
the relative error. It is found from Fig. 5 that the convergence of the solution
becomes slower as the iteration number increases. The following results of the
reconstruction of the fluctuation are at the iteration number of thirty. The relative
error at this iteration number is about 0.003.

Figures 6 and 7 show the comparisons of the target and the results of the
reconstruction of µ̃ and λ̃ at the depth of x3/λT = 2, respectively. It is found
from Figs. 6 and 7 that the reconstructed amplitudes of the fluctuations are almost
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Figure 7: Results of the reconstruction of λ̃ at the depth of x3/λT = 2.

at the right side of the fluctuation. Improvement of accuracy of spatial
spreads of the fluctuation is the task of the future. The processor used for
the analysis is AMD Opteron 6220. The real time required for the compu-
tation was 840 min, in the case that the four core MPI parallel processing
was used.

4 Conclusion

In this article, the fast method for the inverse scattering analysis of elastic
half space was developed by means of the volume integral equation method.
Observed scattered waves at the free surface of a restricted region were used
to reconstruct fluctuations of the wave field. The Tikhonov regularization
method was employed to have the solution of the Born approximated inte-
gral equation converge. According to the numerical results for the inverse
scattering analysis, the reconstructed fluctuations were found to have almost
the same amplitudes with the target model. The accuracy of the reconstruc-
tion of the spatial spread of the fluctuations, however, should be improved.
This improvement is the task for the future.
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equal to the targets. The spatial spreads of the reconstructed results are, however,
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reason for the discrepancies between the reconstructions and targets. It can be said,
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the free surface that is applied at the right side of the fluctuation. Improvement
of accuracy of spatial spreads of the fluctuation is the task of the future. The
processor used for the analysis is AMD Opteron 6220. The real time required for
the computation was 840 min, in the case that the four core MPI parallel processing
was used.

4 Conclusion

In this article, the fast method for the inverse scattering analysis of elastic
half space was developed by means of the volume integral equation method.
Observed scattered waves at the free surface of a restricted region were used to
reconstruct fluctuations of the wave field. The Tikhonov regularization method
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was employed to have the solution of the Born approximated integral equation
converge. According to the numerical results for the inverse scattering analysis,
the reconstructed fluctuations were found to have almost the same amplitudes with
the target model. The accuracy of the reconstruction of the spatial spread of the
fluctuations, however, should be improved. This improvement is the task for the
future.
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