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Abstract 

This paper presents a coupling strategy between the Method of Fundamental 
Solutions (MFS) and the Meshless-Local-Petrov-Galerkin (MLPG) for the 
analysis of soil-structure interaction problems in the frequency domain. In the 
proposed approach, the MFS is used to model the outer infinite (or semi-infinite) 
medium, correctly accounting for the far-field conditions in the soil, while the 
MLPG is used to simulate the elastodynamic behavior of an embedded solid 
structure. The MLPG formulation used here is based on the construction of shape 
functions using the MQ RBF (Multi Quadric Radial Basis Functions); in 
addition, the test function used to establish the nodal equations is the Heaviside 
function, leading to the so-called MLPG-5 approach. A direct coupling is 
considered between the MFS and the MLPG, which implies the construction of a 
system matrix which accounts for the full coupling effects; in the proposed 
coupling approach, the possible use of different node distributions along the 
boundary for the two methods is accounted for, thus rendering the model flexible 
in allowing different discretization requirements for the soil and for the structure. 
The algorithm is here applied to 2D problems, and its behavior in terms of 
convergence and accuracy is analyzed, by comparing its results with those 
provided by reference solutions. An application example is also presented to 
illustrate the potential of the proposed approach. 
Keywords: MFS, MLPG, coupling numerical methods, frequency domain. 

1 Introduction 

When analysing soil-structure interaction and vibration induced by underground 
transportation systems, the study of wave propagation phenomena in elastic 
media and the interaction between different solid heterogeneities and the 
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elastic hosting media represent important research subjects. In the last decades, 
the development of a significant number of numerical methods has enhanced our 
ability to solve more complex and realistic wave propagation and vibration 
transmission/reduction problems. In these fields, the use of models based on the 
Finite Difference Method (FDM), Finite Element Method (FEM), Boundary 
Element Method (BEM), and some variations of these techniques, has been 
commonly applied and documented, as for instance, in some review works [1, 2]. 
     On the other hand, in the last two decades, a different class of numerical 
methods, that doesn’t present domain or boundary discretization, the so-called 
meshless methods, has become an interesting alternative to the referred methods, 
such as, the Method of Fundamental Solutions – MFS and the Method of 
Particular Solutions – MPS [3, 4], Meshless Local Petrov-Galerkin – MLPG 
methods [5, 6], and Radial Basis Functions – RBF Collocation methods (e.g., the 
Kansa’s method) [7, 8]. Two truly meshless methods are in the scope of analysis 
of the present work, namely the MFS and the MLPG. The MFS’ solution is 
found by using a linear combination of fundamental solutions, generated by a set 
of virtual sources placed outside the analysis domain. The MLPG is a flexible 
method, in which no elements or meshes are required for field interpolation of 
the solution variables or for background integration purposes. This method is 
based on a local weak form and only integration in regularly shaped local 
subdomains is required, while allowing for the choice of different trial and test 
functions. 
     In order to exploit the individual potentialities of distinct numerical methods 
while minimizing their weaknesses, the development of hybrid numerical 
schemes has been often suggested by many authors. Although many hybrid 
algorithms correspond to standard direct coupling methodologies, several 
iterative coupling procedures between different numerical formulations have 
recently been proposed, allowing the use of independent discretizations while the 
corresponding sub-domains can be analysed separately [9, 10]. For dynamic 
fluid-structure and soil-structure interaction problems, the specific case of 
coupling the FEM and the BEM has been extensively documented [11, 12]. The 
coupling of the MFS with other numerical methods has also been proposed, for 
instance with boundary element formulations [13] and with Kansa’s meshless 
method [14]; in addition, examples of the coupling of the MLPG with FEM and 
BEM has also been implemented [15]. 
     In this paper, a direct coupling strategy between the MFS and the MLPG is 
presented in the frequency domain, with the first method modelling the hosting 
infinite elastic environment while the second one simulates the embedded solid 
structure. In the implemented coupling strategy, the use of independent point 
distributions for each part of the model and along the soil-structure interface is 
allowed, while accounting for a perfect interaction across interfaces. The adopted 
MLPG formulation is the so-called MLPG-5 approach [6, 16], with the test 
function used to establish the nodal equations over a local subdomain 
corresponding to the Heaviside step function. Here, the shape functions are 
constructed using the MQ (Multi Quadric) RBF. 
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     The present work is organized as follows: first, the mathematical formulation 
is presented, with the equations for the elastic problem being described as well as 
the formulations of the numerical MFS and MLPG schemes. Then, the direct 
coupling procedure between these techniques is briefly introduced. The model 
verification comprises the analysis of its convergence and accuracy behaviours in 
comparison with reference solutions. In the last section, a numerical application 
example, with a solid tunnel embedded in an elastic formation, is used to 
illustrate the coupled formulation’s applicability in modelling a soil-structure 
interaction engineering problem. 

2 Mathematical formulation 

In the time domain, the propagation of waves in a homogeneous elastic medium 
is governed by the vector wave equation (elastic problem)   
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where   and   are Lamé constants,   is the density of the elastic medium, and 

u  is the displacement vector. The application of a time Fourier transformation 
leads to the following equation, when null initial conditions are assumed:  
 

   22 0         u u u  (2) 

 
in which   is the angular frequency.  The solution of this vector equation can 
be obtained using different numerical schemes and strategies. 

2.1 Formulation of the MFS 

The MFS is a collocation method which approximates the solution within a 
given elastic domain as a combination of fundamental solutions generated by a 
set of virtual sources positioned outside the domain. 
     Given a set of NS virtual sources, positioned outside the domain (at positions 

0
kx , with 1k NS  ) so as to avoid singularities, it is possible to write the 

displacement at point x  along direction i  ( x  or y ) as: 

 

 0 , 0 ,
1 1
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k k

u G A G A  
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In equation (3), ixG  and iyG  represent the fundamental solutions which allow 

calculating the displacement generated at point x  along direction i  due to a unit 

load positioned at 0
kx  and acting along x  or y , respectively. In addition, ,k xA  
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and ,k yA  represent the a-priori unknown amplitudes of each of the virtual 

sources. For the case of a homogeneous solid, the fundamental solutions can be 
defined as [17]: 
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the Hankel function of order n and of the second kind, while 
0

kr  x x . Using 

these equations, strains and stresses at any domain point can be easily obtained 
making use of classic elasticity equations. 
     Considering these definitions and imposing the necessary boundary 
conditions at a set of NS boundary collocation points, positioned along the 
boundary of the domain, a system of 2xNS equations on 2xNS unknowns can 
then be assembled.  
     The final system of equations of the MFS can be written as 
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in which G  and H  are assembled establishing the essential and the natural 

boundary conditions, respectively, and u  and t  incorporate the prescribed 
displacements and stresses (normal and tangential to the boundary) at the 
collocation points. The vector of unknowns can then be defined as 

1, 1, 2, 2, , ,( ) [ ..... ]T
x y x y NS x NS yA A A A A A A . 

2.2 Formulation of the MLPG for closed subdomains 

For the formulation of the MLPG approach used here, a number of nodes is 
scattered throughout the domain and along its boundary, and the following weak 
form (obtained considering a Heaviside test function, leading to the so-called 
MLPG-5 [6]) of the governing equation around node i  is considered 
 

 2

si su i st
i i it t u t

   
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in which   is the boundary and   is the domain of analysis for the MLPG, s  

is the boundary of subdomain i  around the node, which can be decomposed in 

si  (internal boundary), su  (essential conditions boundary) and st  (natural 

conditions boundary where it  is imposed). A schematic representation of the 

local boundaries around differently located nodes is illustrated in Figure 1. 
 

 

Figure 1: Illustrative representation of a portion of the MLPG analysis 
domain, identifying the different types of local boundaries.  

     Using this weak form representation, a system of equations can be defined as 
 

  2 Ku Mu F  (9) 
 
where K  stands for the stiffness matrix, M  stands for the mass matrix, and F  
stands for a vector incorporating the boundary conditions and external loads. The 
entries of these matrices and vectors can be defined as 
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N ,   and B  being matrices containing the information about the outward 

pointing normal with respect to the local boundaries, and about shapes functions 
and their derivatives, respectively; D  is the standard material behaviour 
(constitutive) matrix, here considered for the case of plane-strain problems and 
for isotropic elastic materials. Details on these matrices can be found in [16], 
among other published works. Here, the integration subdomain is considered to 
be 0.5 times the distance to the nearest neighbour node, while the support 
domain for interpolation is assumed to be 3.5 times that distance. 
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     It should be noted, from equation (9), that, if a constant point distribution is 
used, matrices K  and M  only need to be computed once, even when several 
frequencies are to be analysed.  
     The shape functions adopted in this work are built making use of the MQ 

RBF, incorporating polynomial terms of the first order. Considering a point ix , 
and defining an interpolation domain around the point including M distinct 
nodes, the displacement along direction k  can be defined as 
 

  
1 1

( ) ( )
M NP

i j i j j i j

k k k

j j

u R B P C
 

    x x    (13) 

 
with the following constraint 
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where NP  equals 3 when the polynomial terms are of first order, in that case 

jP  being the thj  element of ( , ) [1 ]x y x yP ; 2 2( ) ( )j iR r c  x  ( 1.03   

is adopted here, following [16]), with i j
r  x x  and c  being a free parameter. 

Writing equations (13) and (14) for a set of M nodes within a local interpolation 
domain, the system 1

0 0k k k k
  u R Q Q R u  can be defined ( ku  being the 

vector containing the displacements at the nodal points of the interpolation 
domain, and 1 1[ ... ... ]M NP T

k k k k kB B C CQ ), and the displacement at a generic 

point x , not coinciding with a node, can be written as 
 

 1
0( ) ( ) ( )T

k k ku  x R x R u Φ x u                          (15) 

 
with ( )Φ x  being the so-called shape function at x , and 

1 1[ ( ) ... ( ) ( ) ... ( )]M NP TR R P PR x x x x  being a vector built using the 

coefficients from equation (13), containing the values of the RBFs and 
polynomial functions at point x . It should be noted that, in practice, ( )Φ x  

contains nothing more than interpolation coefficients that allow computing the 
displacement at point x  from the displacements at the nodal points used for 
interpolation. 

3 MFS-MLPG coupling 

The MFS and the MLPG parts of the model are coupled using a direct approach. 
The coupling strategy is, however, developed so that different discretizations can 
be used for each part of the model (e.g. for each numerical model). For that 
purpose, consider a portion of the interface connecting the MFS and the MLPG 
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subdomains as illustrated in Figure 2, along which equilibrium and continuity 
conditions must be enforced.  
 

 

Figure 2: MFS-MLPG interface. 

     To enforce displacement continuity, the corresponding continuity equations 
must be written for each of the collocation points on the MFS part of the model. 
Considering a collocation point N, coinciding with a MFS node, the 
corresponding continuity equations can be written just as 
 

  , ,, , 0( ) ( )N N
k MFS k MLPGu u  x x  (16) 

 
where the subscripts MFS or MLPG indicate which part of the model is to be 
considered. To calculate each term, equations (3) and (15) must be used 
respectively for the MFS and for the MLPG. 
     The traction equilibrium conditions are, in turn, established at the MLPG 
boundary nodes, and are thus considered as additional terms in the MLPG 
equations established at those nodes. Considering equation (9), and analysing the 
MLPG nodes along the interface with the MFS domain, one may then write at 
node NM: 
 
  ( , ) ( , ) 0NM NM

MLPG MFS  F x F x  (17) 

 
in which ( , )NM

MLPG F x  is obtained from equation (12) and ( , )NM
MFS F x  is the 

vector of tractions generated by the MFS part of the domain at the analysed node 
NM; the direction of the outward pointing normal is adopted for each 
subdomain. To compute these tractions, integration of the corresponding stresses 
along the boundary must be performed. 

4 Model verification  

To verify the proposed coupled model, consider an infinite medium in which a 
circular solid inclusion of unit radius is located, centered at the origin, excited by 
a dynamic load acting at some point of the host elastic medium. For this case, if 
the same elastic properties are ascribed both to the host medium and to the 
inclusion, the solution of the problem can be defined analytically using equations 
(4)–(6), depending on the direction of the load. Thus, to verify the proposed 
model, a test problem is considered assuming that the load acts along the vertical 

MLPG node
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Boundary Elements and Other Mesh Reduction Methods XXXV  171

 
 www.witpress.com, ISSN 1743-355X (on-line) 
WIT Transactions on Modelling and Simulation, Vol 54, © 2013 WIT Press



direction and that it is positioned at point 0x  with coordinates (-10.0 m; 2.0 m), 

and that the elastic properties of the host solid and of the inclusion materials are 
500 MPaE  , 0.2   and 32000 kg/m  . The response of this system is then 

calculated for two specific frequencies of 100 Hz and 500 Hz, over a set of points 
located within the inclusion. For the numerical model, fixed numbers of 
collocation points are defined for the MFS (10 for f=100 Hz and 20 for f=500 Hz), 
and the number of boundary nodes of the MLPG is then progressively increased; 
for the MFS, the sources are positioned at a distance of 0.5 m from the interface. 
Figure 3a illustrates a sample point distribution for this simple test problem, while 
Figures 3b and 3c exhibit the convergence of the method (using the relative L2 
error norm) for the two frequencies. To determine the relative error, the following 
expression is used: 
 

     2 2
/

NMLPG NMLPG
i i i
exact numerical exact

i i

e u u u    (18) 

 
for which the displacements are evaluated at all MLPG nodes. In that expression, 
NMLPG is the number of nodes in the MLPG domain. 
 

 
a) 

 
b) 

 
c) 

Figure 3: Verification of the MFS-MLPG model: a) sample point distribution 
for the test problem; b) convergence of the response for f=100 Hz; 
c) convergence of the response for f=500 Hz. 
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     Observing the two curves plotted in Figure 3, it becomes clear that the error is 
progressively reduced as the number of points in the MLPG part of the model is 
increased, indicating that the response is converging to the solution of the 
problem. These results also indicate that, for this situation, the MLPG is limiting 
the accuracy of the computed results, and that only a very small number of MFS 
points is required to attain good results. This fact is relevant since it further 
confirms the importance of allowing independent discretizations to be used for 
each model. 
     To further verify the coupled model, an additional test was performed, 
considering the properties of the host medium to be different from those inside 
the circular inclusion. For this purpose, the properties of the elastic material of 
the inclusion are assumed to be 2 2 GPa,E  2 0.2   and 3

2 2500 kg/m .   A 

reference solution for this case was obtained making use of the Boundary Element 
Method (BEM), discretizing the interface between solids using 100 boundary 
elements with constant interpolation function. Figure 4 illustrates the computed 
displacements at a receiver located at Rx  with coordinates (2.0 m; 2.0 m) for 

frequencies between 2Hz and 200Hz, when 20 collocation nodes are used for the 
MFS, and 50 boundary nodes are used for the MLPG. As can be observed in the 
presented plots, an excellent agreement was found between the BEM and the 
proposed coupled approach. 
 

a) b) 

Figure 4: Responses computed using the MFS-MLPG model and a BEM 
reference model at a single receiver, along a full frequency range:  
a) horizontal ( x ) displacement; b) vertical ( y ) displacement. 

5 Numerical application example 

As an application example of the proposed methodology, consider the case of a 
tunnel with the geometry depicted in Figure 5, with an external radius of 3.0 m. 
The structure of the tunnel is assumed to be homogeneous, with properties

29 GPaE  , 0.2   and 32500 kg/m  , while the surrounding soil is 

characterized by 500 MPaE  , 0.2   and 31800 kg/m  . The model used 
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Figure 5: Model of the buried tunnel excited by a distributed dynamic load. 

for this problem incorporates 60 collocation points for the MFS, and a total of 488 
points for the MLPG, as illustrated also in Figure 5. 
     Time responses have been calculated for this problem, assuming that the 
excitation load (a vertical distributed load) has a temporal variation defined by a 
Ricker wavelet, with a central frequency of 100 Hz. Responses are first 
calculated in the frequency domain for frequencies between 2 Hz and 256 Hz, 
considering complex frequencies with a small imaginary part 
( 2 0.7 i 2 ),c f f        to avoid aliasing phenomena [18]. Figure 6 exhibits 

the response computed throughout the surrounding soil (along a grid of receivers 
placed between 20 mx    and 20 mx  , and between 15 my    and 

15 my  ), at two time instants (t=30.3 ms and t=50.3 ms), in terms of 

horizontal and vertical displacements.  
 

a) 

 b) 

Figure 6: Horizontal (left) and vertical (right) displacements at time instants 
of 30.3 ms (a) and 50.3 ms (b). 
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     At the earlier time, the displacements in Figure 6a) clearly reveal two 
different wavefronts radiating from the tunnel structure, corresponding mostly to 
P waves and S waves traveling in the soil with velocities of 555.5 m/s and 
340.2 m/s. Additional wavefronts are also visible which are probably related to 
second order pulses originated by the vibrating tunnel structure; these waves 
exhibit, however, lower amplitudes. At the later time, these waves have 
propagated away from the structure, and very little energy is visible at regions 
closer to the tunnel. 

6 Final remarks 

A numerical model coupling the MFS and the MLPG5 (with Heaviside test 
functions) has been presented in this work for the analysis of coupled soil-
structure interaction. A direct coupling between the two methods is performed, 
leading to a fully meshless model which allows independent point distributions 
for the MFS and MLPG subdomains. The model was verified against a simple 
analytical solution, for which convergence to the correct solution was observed 
when denser point distributions were used. Additionally, good results were 
registered when comparing the results provided by the model with reference 
BEM results, for the dynamic response of a buried circular elastic inclusion. 
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