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Abstract

The transmission of elastic waves in infinite/finite unidirectional phononic crystals
is investigated by using the boundary element method (BEM). For the infinite
periodic structure, we use BEM to formulate a Bloch’s eigenvalue problem which
has a nonlinear property caused by the Hankel functions in the fundamental
solution. This nonlinear eigenvalue problem is solved by employing a contour
integral method and band gaps are found in the dispersion curves. For the finite
structure, a certain number of layers for cells are given to connect the input and
output domains. The numerical simulation shows that the finite structure also
presents a frequency banded nature which coincides with the band gaps of the
infinite structure.
Keywords: elastic wave, periodic structure, block SS method, boundary element
method.

1 Introduction

The so-called phononic crystal is usually composed of materials with different
properties in Young’s modulus, density, Poisson’s ratio, etc., and presents a
frequency banded nature. This property makes the propagation of elastic waves in
certain frequency range to be controlled by a certain collocation of the materials.

Many efforts have been made both on theoretical and experimental studies [1,2]
for phononic crystals. In particular, for elastic wave propagation in an infinite 1D
periodically layered media, the transfer matrix method is proposed to predict the
dispersion curves across a specified frequency range [3, 4]. The investigation of
the existence of band gaps in quasi-one-dimensional phononic crystal plates with
bounded unit cell is also reported [5].
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Studies of the periodic structures of finite layers have also been made [6, 7], in
which the transfer matrix method is employed to predict the frequency-dependent
transmission for a 1D finite periodic structure. Moreover, with the method of
characteristics, propagation of waves in infinite and finite periodic structures have
been investigated [7]. The latter study investigated the effects of the number of the
layers for unit cells on the dynamics of a bounded structure [8, 9]. A study of the
finite elastic periodic materials and structures is presented with a perspective on
both frequency and temporal domains in [10], in which the correlation between
the dynamic response of the respective finite and infinite systems is discussed.

In this paper, we use the BEM to study the transmission of elastic waves in a
finite structure having periodic part that can be considered as a phononic crystal
plate. When using BEM, only the boundary is discretized into line meshes in
the 2D problem. We investigate the dispersion relation of the infinite structures
by giving the periodic boundary condition to a unit cell. The nonlinear Bloch
eigenvalue problem resulting from the use of BEM is solved by using the block
Sakurai–Suigura (SS) method [11]. In this work, the longitudinal and transverse
waves are considered, and a traction free boundary condition is given on the
surfaces of the phononic crystal plates. Numerical simulation demonstrates that
the reduction of the transmission shows a good agreement with the band gaps
obtained by the block SS method.

2 Formulations

2.1 The boundary element method for 2D elastodynamic problem

The governing equation for a harmonic vibration of structure of homogeneous and
isotropic material, represented by displacements, is

(C2
1 − C2

2 )uj,jk(x, t) + C2
2uk,jj(x, t) = ük(x, t), (1)

where C1 and C2 are the wave speeds of longitudinal and transverse waves,
respectively, written as,

C1 =
√
(λ + 2μ)/ρ =

√
E(1− ν)/

[
ρ(1 + ν)(1 − 2ν)

]
, (2)

C2 =
√
μ/ρ =

√
E/
[
2ρ(1 + ν)

]
, (3)

where ρ is the density of the medium, λ and μ are Lamé’s constants, E is Young’s
modulus, and ν is Poisson’s ratio.

For harmonic vibrations, the displacement can be written in a time-independent
form:

ui(x, t) = Ui(x, ω)e
iωt, (4)

where i denotes the imaginary unit, ω = 2πf is the circular frequency, and f is
the frequency.
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Substituting Eq. (4) into Eq. (1), we obtain the time-harmonic form of the
governing equation, as follows:

(C2
1 − C2

2 )Uj,jk(x, ω) + C2
2Uk,jj(x, ω) + ω2Uk(x, ω) = 0. (5)

The boundary integral equation corresponding to the above boundary value
problem is obtained as

ckl(y)Uk(y, ω) +

∫
Γ

t∗kl(x, y, ω)Uk(x, ω)dΓ(x)

−
∫
Γ

u∗kl(x, y, ω)Tk(x, ω)dΓ(x) = 0, (6)

where ckl depends on the geometry of the boundary on which y is located,
the kernels u∗ij(x, y) and t∗ij(x, y) are known as the displacement and traction
fundamental solutions which are given for the two-dimensional case [12] as

u∗ij(x, y) =
1

απρC2
2

[
ψδij − χr,ir,j

]
, (7)

t∗ij(x, y) =
1

απ

[(
dψ

dr
− 1

r
χ

)(
δi,j

∂r

∂n
+ r,jni

)
− 2

r
χ

(
njr,j

− 2r,ir,j
∂r

∂n

)
− 2

dχ

dr
r,ir,j

∂r

∂n
+

(
C2

1

C2
2

− 2

)(
ψ

dr
− dχ

dr
− α

2r
χ

)
r,inj

]
, (8)

where

ψ = K0

(
sr

C2

)
+
C2

sr

[
K1

(
sr

C2

)
− C2

C1
K1

(
sr

C1

)]
, (9)

χ = K2

(
sr

C2

)
− C2

2

C2
1

K2

(
sr

C1

)
, (10)

and s = iω, α = 2 for the 2D case, and K0, K1, and K2 are the modified Bessel
functions of order 0, 1, and 2, respectively.

Discretizing Eq. (6) with N constant boundary elements, we obtain a linear
equation as follows:

ckl(y)U
i
k(y, ω) +

N∑
j=1

(∫
Γj

t∗kl(x, y, ω) dΓ(x)

)
U j
k(x, ω)

−
N∑
j=1

(∫
Γj

u∗kl(x, y, ω) dΓ(x)

)
T j
k (x, ω) = 0, (11)

where ckl = (1/2)δkl when the boundary on which y lies is smooth, and U j
k(y, ω)

and T j
k (x, ω) denote the xk component of the displacement and traction on the

element Sj .
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Let i vary from 1 toN , then we obtain a 2N system of linear algebraic equations
for U and T as

BU = GT, (12)

where B and G are 2N × 2N matrices, respectively, and U,T ∈ C2N .

2.2 The block SS method for the Bloch eigenvalue problem for infinite
phononic crystals

For infinite periodic structures, by applying the periodic boundary condition and
homogeneous boundary condition to a unit cell, we have a nonlinear eigenvalue
problem, as follows:

F(ω, k)X = 0. (13)

For phononic crystals in uni-directional periodicity, the wave-number vector
becomes a scalar k and is set to vary from 0 to π/d, and the dispersion curves
can be obtained by solving eigenvalues for ω determined by Eq. (13).

To solve this highly nonlinear eigenvalue problem, we use the block SS method
and convert it to a generalized eigenvalue problem. The block SS method provides
an eigenvalue problem of a linear matrix pencil of Hankel matrices:

H<

Kl̂
− ωHKl̂ = 0, (14)

where H<

Kl̂
and HKl̂ are Hankel matrices defined as follows:

HKl̂ =

⎛
⎜⎜⎜⎜⎝

M0 M1 · · · MK−1

M1 M2 · · · MK

...
...

. . .
...

MK−1 MK · · · M2K−2

⎞
⎟⎟⎟⎟⎠ , (15)

H<

Kl̂
=

⎛
⎜⎜⎜⎜⎝

M1 M2 · · · MK

M2 M3 · · · MK+1

...
...

. . .
...

MK MK+1 · · · M2K−1

⎞
⎟⎟⎟⎟⎠ , (16)

where Mm is the moment matrix defined with a contour integral along a closed
Jordan curve S in the complex plane of ω:

Mm =
1

2πi

∮
S

UHF−1(z)Vzmdz, (17)

where (·)H denotes the conjugate transpose, V is a 2N × l̂ matrix formed by
column vectors v1,v2, . . . ,vl̂ ∈ C2N , and for simplicity, U = V.

Using Eq. (14), we can extract the eigenvalues located within S.
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Figure 1: The unit cell of the periodic structure. The stiff/dense material and
the compliant/light material phases are shown in black and white,
respectively.
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Figure 2: Two square domains are connected with the periodic cells of NL layers.
The input and output domains are the left and right square domains
shaded in gray, respectively.

3 Numerical simulation

A unit cell composed of alternating layers consisting of two different materials is
shown in Fig. 1, where the region shown in black corresponds to a stiff and dense
material (denoted by subscript ‘2’) of density ρ2 = 1.6 × 104 [kg/m3], Young’s
modulus E2 = 1.248× 108 [Pa], and Poisson’s ratio ν2 = 0.34, while the region
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Figure 3: The band structure for the infinite structure. Shaded ranges denote the
concerned band gaps.

in white corresponds to a compliant and light material (denoted by subscript ‘1’)
of density ρ1 = 2.0 × 103 [kg/m3], Young’s modulus E1 = 7.8× 106 [Pa], and
Poisson’s ratio ν1 = 0.34.

The finite structure is considered as comprising of the input domain, output
domain, and NL layers of cells, as depicted in Fig. 2, where an excitation
T̄ = {1.0, 0.0} [N/m] is given on the left square region in gray, which is
considered as the input domain. Roller support boundary condition is assumed
on the right-end boundary of the right-side square region shown in gray
color. This square region is considered as the output domain. The traction
free boundary condition is given on the rest of the boundaries. The material
properties of those of the input and output domains are assumed to be as
those of material 2. In the output domain, we consider 30 observation points at
which the displacements are calculated. We define a cartesian coordinate system
whose origin is placed at the left bottom corner of the output square domain.
Then, the coordinates of the observation points are (0.1, 1), (0.3, 1), . . . , (1.9, 1)
from point 1 to 10, (0.1, 0.5), (0.3, 0.5), . . . , (1.9, 0.5) from point 11 to 20,
(0.1, 1.5), (0.3, 1.5), . . . , (1.9, 1.5) from point 21 to 30.

Firstly, let us see the band structure shown by the dispersion curves in Fig. 3,
where the circular frequency range is chosen as 10 ∼ 90 [Hz]. It should be noted
that the band structure is determined by an infinite system with the unit cell shown
in Fig. 1. Here, we consider only the two band gaps represented by the shaded
ranges.
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Figure 4: (a) The transmission of |U| of the structure with 20 periodic layers and
(b) the projection to the ω-|U| plane.

For the finite structure, we show in Figs. 4 and 5 the displacement responses
|U| =

√
U2
x + U2

y of the observation points in the output domain with NL = 20

and NL = 40 layers of cells, and its projection to the ω-|U| plane, respectively.
It can be seen that the displacement transmitting to the output domain becomes
smaller with the increase in the number of layers.

4 Concluding remarks

In this work, the band structure of a unidirectional infinite phononic structure and
the displacement transmission in a finite structure are investigated by using the
BEM and the block SS method. The eigenvalues of the Bloch eigenvalue problem
of the infinite structure are extracted by using the block SS method. The band gaps
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Figure 5: (a) The transmission of |U| of the structure with 40 periodic layers and
(b) the projection to the ω-|U| plane.

of the infinite periodic structure are found by plotting the dispersion curves. The
transmission of the elastic waves for the finite periodic structure with a certain
number of layers of periodic cells is computed, and it is found that the reduction
of the transmission occurs at the band gaps of the infinite structure and can be
enhanced by increasing the number of layers for cells.
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