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Abstract 

The elastodynamic solution for plate bending including the shear deformation 
effect is modified in the present study. A regular potential function at the source 
point was adopted in the fundamental solution for the unit couple as the main 
change with reference to the former solution. The use of regular functions does 
not affect the switching of the solution including effects of shear deformation 
and rotatory inertia to that for the classical model when variables related to them 
are turned null. Furthermore, the present function in the vector potential field is 
reduced to that employed in static analysis when the frequency value is zero. The 
main benefit in the present formulation is the reduction in the number of points 
employed in numerical integrations. Results obtained for the first natural 
frequency are compared to available solutions in the literature to show the 
behavior of the present formulation. 
Keywords: harmonic solution, bending including the shear deformation effect, 
the Mindlin bending model. 

1 Introduction 

The plate bending model including the effect of shear deformation is very 
efficient when is necessary to evaluate stress concentration in the edge zone of 
the plate or around holes that have a diameter not larger than eight times of the 
plate thickness [1] whereas the overall plate behavior can be analyzed with the 
classical bending model. Reissner [2] first presented a model to consider the 
effect of shear deformation in static analyses. The discrepancies in dynamic 
analysis using the classical model with reference to three-dimensional theory 
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were shown by Mindlin [3] who presented a plate bending model similar to that 
proposed by Reissner and included the influence of rotatory inertia to perform 
dynamic analysis. Years later, Mindlin has shown in the study of flexural 
vibration of rectangular plates [4] that three types of vibration modes could be 
identified when the effect of shear deformation was considered: the flexural, the 
thickness-shear and the thickness-twist mode. The decoupling of the direct 
relation between values of deflection derivatives and plate rotations was the main 
consequence from combination of those vibration modes in general vibration 
analyses. When the vibration modes were analyzed independently, the direct 
relation between values of plate rotation and deflection derivative appeared in 
the flexural mode but not in the thickness-shear mode. On the other hand, the 
thickness-twist mode had only plate rotations, i.e. the model where the complete 
decoupling was identified. The frequencies related to the thickness-twist mode 
were called breathing frequencies by Levinson [5] who pointed out on 
difficulties to identify frequencies according to the thickness-shear mode in 
general vibration analyses. 
     The effects of shear deformation and rotatory inertia could be considered 
alone or coupled in the elastodynamic formulation presented in [6], which was 
not the same presented in [7] where only the real part of the solution was adopted 
and a limit for angular frequencies had to be introduced. The present study 
improved the elastodynamic solution [6] by considering a regular potential 
function at the source point in fundamental solutions for unit couples. The 
particular solutions related to unit couples were added in both potential fields 
(scalar and vector) of the elastodynamic solution in other strategy with reference 
to [8]. Terms related to particular solutions in [8] disappeared in the plate 
rotations vector due to the use of the field decomposition and were disregard in 
the final expressions of potentials fields in the former elastodynamic solution [6]. 
     The solution due to unit load remained unchanged in the present formulation 
whereas solutions due to unit couples were modified by the addition of the 
particular solution to the solution of Helmholtz’s equation in each potential 
function. The use of regular functions do not affect the switching of the solution 
including effects of shear deformation and rotatory inertia to that for the classical 
model when variables related to them are turned null. An interesting feature 
appeared in the function of the vector potential field, which is reduced to that 
employed in static analysis [9] when the frequency value is zero. 
     The numerical implementation employed quadratic shape functions for 
isoparametric boundary elements with collocation points always placed on the 
boundary. The reduction of the number of points employed in numerical 
integrations was the good feature resultant from the use of regular functions. 
Results obtained for the first natural frequency are compared to available 
solutions in the literature beyond to those obtained with the solution presented in 
[6] to show the behavior of the present formulation. 
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2 Alternative elastodynamic solution 

The equations of motion in time-harmonic problems for an infinitesimal plate 
element under a transverse distributed loading q(t, xi) are next written with Latin 
indices taking values {1, 2 and 3} and Greek indices taking values {1, 2} 

 𝑀𝛼𝛽,𝛽 − 𝑄𝛼 = 𝜌ℎ3

12
𝜕2𝜓𝛼
𝜕𝑡2

 (1) 

 𝑄𝛼,𝛼 + 𝑞 = 𝜌ℎ 𝜕2𝑤
𝜕𝑡2

 (2) 

     The plate has a uniform thickness h and the mass density ρ. The transverse 
acceleration ∂2w/∂t2 and the angular acceleration ∂2ψα/∂t2 are functions of the 
deflection w and plate rotations ψα, respectively. The constitutive relations are 
next written 

 𝑀𝛼𝛽 = 𝐷 (1−𝜈)
2

�𝜓𝛼,𝛽 + 𝜓𝛽,𝛼 + 2𝜈
1−𝜈

𝜓𝛾,𝛾𝛿á𝛽� (3) 

 𝑄𝛼 = 𝐷 (1−𝜈)
2

𝜆2�𝜓𝛼 + 𝑤,𝛼� (4) 
with 

 𝜆2 = 12 𝜅2

ℎ2
 (6) 

D is the flexural rigidity, ν is the Poisson ratio. The shear parameter κ2 can be a 
fixed value equal to π2/12 or a function of the Poisson ratio according to [3], 
which is given by 

 4��1 − (1−2𝜈)
2(1−𝜈)

𝜅2� (1 − 𝜅2) = (2 − 𝜅2)2  

     The decomposition of the plate rotations vector (ψα) in the scalar (φα(xα, ω)) 
and the vector potential field (0, 0, H(xα, ω)) remained, as done in fundamental 
solutions presented in [6, 8, 9] 

 𝜓𝛼 = 𝜕
𝜕𝑥𝛼

[𝜙1(𝛿1𝑟) + 𝜙2(𝛿2𝑟)] + 𝑒3𝛼𝛽
𝜕

𝜕𝑥𝛽
[𝐻(𝛿3𝑟)] (7) 

e3αβ is the permutation symbol. The arguments of the potential functions are 
dependent of variables related to the rotatory inertia (R), the shear deformation 
(S) and the classical dynamic factor for plates (δ0

4) [3] 

 𝛿1 = 1
2
𝛿04 �𝑅 + 𝑆 + �(𝑅 − 𝑆) + 4

𝛿0
4� ; 𝛿2 = 1

2
𝛿04 �𝑅 + 𝑆 − �(𝑅 − 𝑆) + 4

𝛿0
4� 

 𝛿3 = 2
1−𝜈

�𝑅𝛿04 −
1
𝑆
� = 𝜆2(𝑅𝑆𝛿04 − 1) 

 𝑅 = ℎ2

12
; 𝑆 = 1

𝜆2
2

(1−𝜈)
; 𝛿04 = 𝜔2𝜌ℎ

𝐷
 

     The relation between the deflection and scalar potential functions (φα) [6, 8] 
remained 
 𝑤 = −(𝛽1 + 1)𝜙1(𝛿1𝑟) − (𝛽1 + 1)𝜙2(𝛿2𝑟) (8) 
and 
 𝛽1 = 𝑆(𝛿12 − 𝛿04𝑅); 𝛽2 = 𝑆(𝛿22 − 𝛿04𝑅) 
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     The fundamental solution can be written in terms of Hankel functions of the 
first kind or modified Bessel functions with complex arguments [6, 8]. The 
expressions for potential functions in the scalar and the vector potential field are 
next written in terms of modified Bessel functions: 

a) The solution due to the unit point force is the same present in [6] 

 𝜙1 = − 1
2𝜋𝐷

1
�𝛿1

2−𝛿2
2�
𝐾0(𝑖𝛿1𝑟); 𝜙2 = 1

2𝜋𝐷
1

�𝛿1
2−𝛿2

2�
𝐾0(𝑖𝛿2𝑟); 𝐻 = 0 (9) 

b) The solution due to unit couple in direction γ has the particular solution 
added to the solution of Helmholtz’s equation in each potential function 

 𝜙1 = − 1
2𝜋𝐷

1
�𝛿1

2−𝛿2
2�

𝜕
𝜕𝑥𝛾

[𝐾0(𝑖𝛿1𝑟) + 𝑙𝑛(𝑟)]; 
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𝜕
𝜕𝑥𝛾

[𝐾0(𝑖𝛿2𝑟) + 𝑙𝑛(𝑟)]; (10) 

 𝐻 = −𝑒3𝛾𝜂
1

2𝜋𝐷
1
𝛿3
2

2
(1−𝜈)

𝜕
𝜕𝑥𝜂

[𝐾0(𝑖𝛿3𝑟) + 𝑙𝑛(𝑟)] 

     The present elastodynamic solution becomes equal to that obtained for the 
classical bending model [10] when variables related to effects of shear 
deformation (S) and rotatory inertia (R) are set equal to zero. The plate rotations 
turn directly defined from the deflection function derivatives as result from the 
classical model because constants βα are equal to zero. The solenoidal field (H) 
must be set equal to zero in absence of the effect shear deformation according to 
the equations of motion for the classical model when they are written in terms of 
potentials. On the other hand, when the effect of shear deformation is considered 
and the frequency is set equal to zero, δ3 turns equal to -λ2 and the potential 
function H becomes equal to that used in static analysis [9]. The reason of this 
feature is related to the differential equation to obtain the potential function H 
that remains unchanged in static analysis. Reissner first noted in [11] on the 
similarity between the differential equation related to the effect of shear 
deformation and the “wave” equation. 
     The modified Bessel functions with complex arguments (z) can be written in 
terms of Bessel functions of the first (J) and the second kind (N) as can be done 
for Hankel functions [12] 
 𝐾𝜂(𝑧) = 𝜋

2
𝑖𝜂�𝑖𝐽𝜂(𝑖𝑧) − 𝑁𝜂(𝑖𝑧)� (11) 

     The expansion of those Bessel functions with complex arguments around the 
origin, i.e. when z approaches to zero [12] shows 

 𝐽𝜂(𝑧) → �1
2
𝑧�

𝜂 1
Γ(𝜂+1)

 (12) 

 𝑁0(𝑧) → 2
𝜋

ln 𝑧 (13) 

 𝑁𝜂(𝑧) → −Γ(𝜂)
𝜋
�2 1

𝑍
�
𝜂
 (14) 

     The particular solution introduced in each potential function of the 
fundamental solution due to unit couple regularizes the potential function when z 
approaches to zero according to equations (12) to (14). 
     The static-like form of the equations of motion for harmonic problems led to 
a displacement boundary integral equation for the Mindlin model, similar to that 
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presented for static problems [9] but used in conjunction with the elastodynamic 
fundamental solution instead 

 1
2
𝐶𝑖𝑗(𝑥′)𝑢𝑗(𝑥′) + ∫ �𝑇𝑖𝑗(𝑥′, 𝑥)𝑢𝑗(𝑥) − 𝑈𝑖𝑗(𝑥′, 𝑥)𝑡𝑗(𝑥)�𝑑Γ(𝑥)Γ  

 = ∬ 𝑈𝑖3(𝑥′,𝑋)𝑞(𝑋)𝑑Ω(𝑋)Ω  (15) 
Cij is an element of the matrix C related to the boundary at the source point, 
which becomes the identity matrix when a smooth boundary is considered. uα is 
ψα, u3 is w, tα is the product Mαβ.nβ, t3 is the product Qα.nα. Uij represents the 
rotation (j=1, 2) or the deflection (j=3) due to a unit couple (i=1, 2) or a unit 
point force (i=3). Tij represents the moment (j=1, 2) or the shear (j=3) due to a 
unit couple (i=1, 2) or a unit point force (i=3).  
     The singularities in fundamental solution kernels of DBIE for harmonic loads, 
equation (15), are the same type of those in static DBIE [9] when the present 
elastodynamic solution is used, as summarized in Table 1. 

Table 1:  Singularity type using the present elastodynamic solution. 

Solution due to Deflection 
Ui3 

Rotation 
Ui2 or Ui3 

Shear 
Ti3 

Moment 
Ti2 or Ti3 

Unit Load (i=3) Weak  Regular Cauchy Weak 
Unit Couple (i=1, 2) Regular Weak Weak Cauchy 

 
     The expansion of Bessel functions in the neighborhood of the origin [12], 
equations (12) to (14), was used to obtain the behavior of fundamental solution 
kernels summarized in Table 1. The weak type and the Cauchy type singularity 
are related to logarithmic singularity and r-1 singularity type, respectively. 

3 Numerical implementation 

The numerical implementation employed quadratic shape functions for 
isoparametric boundary elements with collocation points always placed on the 
boundary. The same mapping function was used for conformal and non-
conformal interpolations, i.e. nodes at ends of quadratic elements remain at ends 
when discontinuous elements were employed and only the positions of 
collocation points were shifted. The collocation points were placed at nodes in 
case of continuous elements and at positions (-0.67, 0.0, +0.67), in the range 
(-1, 1), in case of discontinuous elements, i.e. the collocation points were shifted 
to inside the element at the corresponding end where the discontinuity exists. 
The singularity subtraction [13] and the transformation of variable technique 
[14] were employed for the Cauchy and the weak type singularity, respectively, 
when integrations were performed on elements containing the collocation points. 
The standard Gauss-Legendre scheme was employed for integrations on 
elements not containing the collocation points. A uniform load equal to 
150 N.m-2 was applied on the plate surface, the Young modulus was 206.9 GPa, 
the Poisson ration (ν) was 0.3, the mass density (ρ) was 7860 kg.m-3, the side of 
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the plate (a) had a length equal to 50 cm and the analysis used some values for 
the thickness (h). The ratio h/a was varied from 0.05 to 1.0 so that, although the 
smallest value of h/a is for a thin plate, for the larger values of h/a one is 
considering blocks rather than plates. The solutions were compared to those 
available in the literature using the Mindlin model [4], the three-dimensional 
elasticity theory [5] and with the former solution [6]. 
     The shear parameter κ2 was equal to π2/12 to match the value used by Mindlin 
in [4]. The analyzed square plates were simply supported from all sides and the 
hard restraint condition was employed (the twisting moments Mns were 
restrained on the boundary) because this condition was used in [4, 5]. The first 
natural angular frequency was identified using a harmonic excitation in the range 
up to δ0

2 equal to 12a-2 or 16a-2. The numerical solutions were evaluated using 20 
incremental steps. In spite of the whole plate was modeled, the value of plate 
rotation at the center in the quarter of the plate was used in the analysis. The 
plate rotation values were used in the scanning because they appear in all 
vibration modes. A first evaluation was carried to find the focused interval. The 
focused interval containing 2 incremental steps was picked up when the signal of 
the real part of the value changes or a peak appears in the imaginary part of the 
value as shown in Figure 1, according to [6, 7]. The focused interval was 
analyzed again using a step refinement and 20 incremental steps were used to 
scan this interval. Thus, two peaks with opposite signals could be identified in 
the response curve of the real part of the plate rotation as shown in [7]. An 
example of the frequency response for the plate rotation is next presented for h/a 
equals to 0.2. 
 

 

Figure 1: Frequency response for h/a=0.2 with rotatory inertia and shear. 

     The responses of the real and the imaginary parts for rotations or deflection 
values have the same aspect shown in Figure 1 for other ratios h/a. 
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     The first natural angular frequencies identified in the frequency response 
graphs are listed in Table 2 according to h/a ratio. The frequency value 
corresponding to the peak of the imaginary part of the value for rotation was 
listed. It is necessary to point out that arguments iδ2 and iδ3 have positive real 
values for ratios h/a in the range 0.05 to 0.8 and then they become complex-
valued for the ratio equal to 1.0. 

Table 2:  Frequencies with the shear deformation and the rotatory inertia 
effects. 

Ratio 
h/a 

Elasticity 
[4] 

Mindlin 
[5] [6] Obtained Dif. to [6] 

(%) 
Dif. to [5] 

(%) 
0.05 3016 3049 3015 3015 0,00 -1.12 
0.1 5906 5918 5830 5800 -0.51 -1.99 
0.2 10880 10820 10360 10180 -1.74 -5.91 
0.4 17315 17073 15740 15200 -3.43 -10.97 
0.6 20734 20306 18960 18260 -3.69 -10,08 
0.8 22653 22079 21500 20750 -3.49 -6.02 
1.0 23805 23125 23450 23800 +1.49 +2.92 

 
     The values obtained with the present formulation were close to expected 
values from [4–6] and the greatest differences to [5] (11%) were obtained for 
ratios h/a equal to 0.4 and 0.6. A similar study was carried out in [15] with the 
boundary collocation method but there was used a soft restraint condition instead 
(Mnt was released). The differences between the former [6] and the present 
formulation were less than 5%. The whole plate was modeled with continuous 
boundary elements along plate sides but two nodes were introduced at corners, 
i.e. the first and last boundary element in each side were mixed type (continuous 
at one end and discontinuous at other end). Results obtained with the former 
solution used 128 linear elements (132 nodes) and 16 Gauss points in numerical 
integrations whereas 32 quadratic elements (68 nodes) and 12 Gauss points were 
used with the present formulation. Furthermore, no selective integration was 
employed to obtain the results in this paper, i.e. a different number of Gauss 
points according to the distance to the collocation points was not used. There 
were tested other meshes with the present formulation: 

a) 64 quadratic elements (132 nodes) and 12 Gauss Points; 
b) 64 quadratic elements (132 nodes) and 6 Gauss Points; 
c) 128 quadratic elements (260 nodes) and 6 Gauss Points. 

     The results were not changed with other meshes. The author believes the 
present solution becomes stable when 68 nodes were used. The differences 
between boundary element solutions were very low, i.e. values obtained with the 
former [6] the present formulation. The differences between Mindlin values and 
boundary element solutions can be attributed to a different shape of the vibration 
mode in the boundary element method with reference to that used by Mindlin 
where trigonometric functions were adopted as explained in [6]. 
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     The frequency response (h/a=0.2) with linear elements [6], quadratic elements 
(132 nodes) with 12 and 6 Gauss points are shown in Figure 2. No difference 
appears in curves with quadratic elements using 12 and 6 Gauss points in 
numerical integration, i.e. values with 12 and 6 Gauss points were coincident. 
 

 

Figure 2: Frequency response with linear and quadratic elements. 

     The frequency response (h/a=0.2) with quadratic elements but comparing 
results employing 68 nodes (12 Gauss points) with those employing 260 nodes 
(6 Gauss points) are shown in Figure 3. No difference appears in curves with 68 
and 260 nodes. The curves for the real and the imaginary part of values for 
rotation were drawn, only. 
 

 

Figure 3: Frequency response with quadratic elements: 68 and 260 nodes. 
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4 Conclusions 

The present formulation improves the elastodynamic fundamental solution 
presented in [6]. The expressions for displacements (deflection and rotations) 
and tractions (moments and shear) contain singularity types in the same order of 
the static solution. In spite the introduction of the particular solutions in this 
study has handled with geometric singularity (ln r), the complete fundamental 
solution is better to satisfy the non-homogeneous differential equation containing 
singularities due to unit couples. The results obtained from the numerical 
implementation were very close to those obtained with [6] as well as to those in 
the literature [4, 5]. Furthermore, reductions in the number of boundary nodes 
(degrees of freedom) and in the number of Gauss Points were identified in the 
analysis shown. Thus, the present formulation could be interesting in 
elastodynamic solutions requiring a lot of computation time to analyze complex 
engineering problems. 
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