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Abstract 

A meshless Local Integral Equation (LIE) method is proposed for numerical 
simulation of 2D pattern formation in nonlinear reaction-diffusion systems. The 
method works with weak formulation of the differential governing equations on 
local sub-domains with using the Green function of the Laplace operator as the 
test function. The Moving Least Square (MLS) approximation is employed for 
spatial variations of field variables while the time evolution is discretized by 
using suitable finite difference approximations. The effects of model parameters 
and conditions are studied by considering the well known Schnakenberg model. 
Keywords: nonlinear reaction-diffusion systems, Turing instability, pattern 
formation, Schnakenberg model, meshless methods, local integral equations, 
moving least squares, finite differences. 

1 Introduction 

Alan Turing demonstrated [1] how a simple model system of coupled reaction-
diffusion equations could give rise to spatial patterns in chemical concentrations 
through a process of chemical instability (diffusion driven instability). Turing 
also pointed out the role of such patterns in biological pattern formation. A large 
variety of pattern formation with various applications has been explained by 
Turing type models. It is not the aim of this paper to give a review of such 
application and modelling of pattern formation [2]. Recall that several Turing 
models have been developed such as the Gierer-Meinhardt model [3], Gray-Scott 
model [4], Lengyel-Epstein model [5], Brusselator model [6], Schnakenberg 
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model [7] and Selkov model [8]. A typical Turing system is a reaction-diffusion 
system consisting of at least two chemical species (activator and inhibitor) 
exhibiting a steady state which is stable to small perturbations in the absence of 
diffusion, but becomes unstable when diffusion is present (Turing instability). 
The formation of spatial patterns is principally a nonlinear phenomenon. 
Otherwise the unstable modes would grow unlimitedly. Linear theory does 
determine conditions under which spontaneous pattern formation is allowed for 
certain parameter ranges [2]. Initial and boundary conditions, the shape and size 
of the domain yield various forms of patterns. To determine which of the various 
possible patterns will be stable or which conversion takes place, one has to go 
beyond linear theory. Various numerical methods have been used to solution of 
nonlinear reaction-diffusion systems and computer simulations of pattern 
formation. 
     In this paper, we develop the Local integral equation (LIE) method for 
numerical simulations of 2-d pattern formation in reaction-diffusion systems. 
The method is truly meshless, since no elements are required either for 
approximations or for integration in the analysed domain. The Moving Least 
Square (MLS) approximation is employed for spatial variations of field variables 
while the time evolution is discretized by using one-step θ-method. The nodal 
points are distributed freely inside the analysed domain and on its boundary 
without using any connectivity among nodes. The LIE is a weak formulation of 
the differential governing equations on local sub-domains considered around 
each interior node with using the Green function of the Laplace operator as the 
test function. Thus the integral form of the governing equations is the integral 
representation of field variables at interior nodes. The appropriate choice of the 
shape of sub-domains enables us to find the Green function vanishing on the 
boundary of the sub-domain and so eliminate the normal derivatives of the field 
variables from the formulation. This is valuable achievement since the accuracy 
of approximations for derivatives is lower than for primary fields and also the 
evaluation of derivatives at integration points prolongs the computation. The 
nonlinear terms are treated iteratively within each time step. Several numerical 
simulations are presented in order to verify the developed method. Attention is 
paid to illustrate the dependence of pattern shape on the initial conditions, size 
and shape of the analysed domain. 

2 Mathematical formulation of reaction-diffusion problems 

The governing equations for the concentrations of two chemicals ( , )u tx and 
( , )v tx subjected to reaction-diffusion processes are given as [2]  

 2 ( , )
u

u f u v
t

γ
∂

= ∇ +
∂

 ,       2 ( , )
v

d v g u v
t

γ
∂

= ∇ +
∂

    in [0, ]TΩ×  (1) 
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     These equations must be completed with prescription of the initial values 
{ }( ,0), ( ,0)u vx x and the boundary conditions, which are usually taken as the 
Neumann type  

 0
u∂
=

∂n
 ,  0

v∂
=

∂n
  on  ∂Ω  (2) 

     The zero flux conditions imply no external input. If we imposed fixed 
boundary conditions on u and v , the spatial patterning could be a direct 
consequence of the boundary conditions (as it can be seen in ecological 
problems).  
     The relevant homogeneous steady state 0 0( , )u v of (1) is the positive solution 
of 

  ( , ) 0f u v =  ,   ( , ) 0g u v = .   

Since we are concerned with diffusion-driven instability, the steady state must be 
homogeneous and satisfy the equations 

 
( , )

u
f u v

t
γ

∂
=

∂
 ,   ( , )

v
g u v

t
γ

∂
=

∂
  , (3)  

Hence, assuming linear stability for ( )0 0, Tw u u v v= − − about the steady state 

0 0( , )Tu v , we obtain the governing equations  

 
w

Aw
t

γ
∂

=
∂

 ,  , ,

, ,

u v

u v

f f
A

g g
=
 
 
 

  , (4) 

with the partial derivatives of f and g being evaluated at the steady state.    

     Looking for the time evolution in the form tw eω , where ω is the 
eigenvalue, we get the condition Re 0ω < for requirement of linear stability of 
the steady state 0w = . It can be shown [2] that the linear stability is guaranteed 
if  

 , , 0u vf g+ <  ,     , , , , 0u v v uf g f g− > . (5) 

     The solution of the linearized full reaction-diffusion system (1), 

 2w
D w Aw

t
γ

∂
= ∇ +

∂
  ,   

1 0

0
D

d
=
 
 
 

 , (6) 

with using the expansion in terms of the eigenfunctions of the Laplace operator 

corresponding to eigenvalues 2k , yields the dispersion relation 2( )kω . An 
analysis of the dispersion relation is extremely informative in that it immediately 
says which eigenfunctions, i.e. which spatial patterns are linearly unstable and 
grow exponentially with time. Note that with finite domain eigenvalue problems, 
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the wavenumbers are discrete and so only certain k  are relevant. Of course in 
nonlinear RD problems there are mechanisms which do not allow unbounded 
growth of unstable modes with t →∞ . Therefore the linear stability analysis 
(though informative) is not complete for post buckling evolution and it is 
necessary to know the solution of the nonlinear problems with taking into 
account the prescribed boundary and initial conditions as well as the geometry of 
the analysed domain.    
     Nevertheless, the linear stability analysis yields necessary conditions for the 
generation of spatial patterns. In the case of two species RD mechanisms of the 
form (1) these conditions can be summarized as [2] 

, , 0u vf g+ <  ,         , , , ,( ) 0u v v uf g f g− >   

, ,( ) 0u vdf g+ >  ,    2
, , , , , ,( ) 4 ( ) 0u v u v v udf g d f g f g+ − − >     . (7) 

     Being satisfied such conditions, the formation of spatial patterns and their 
shape depends on the boundary and initial conditions as well as on the shape of 
the domain.  

3 Local integral equation formulation and numerical 
implementation 

The governing equations (1) should be valid on an arbitrary sub-domain sΩ of 
the analysed 2-d domain Ω . The weak form of these equations on a local sub-
domain (the local weak form) is given as 

 

2 ( , ) 0
s

u
u f u v u d

t
γ ∗

Ω

∂
−∇ − =

∂
 
  

∫ x  , 2 ( , ) 0
s

v
d v g u v u d

t
γ ∗

Ω

∂
− ∇ − =

∂
 
  

∫ x

  

 (8) 

where u∗ is a test function. Basically, the test function can be selected arbitrarily. 
One of the convenient choices is to take it as the Green function of the Laplace 
operator with vanishing on the boundaries of appropriately chosen sub-domains. 
Let the sub-domain cΩ be a circle of the radius 0r  and centred at the point 

c ∈Ωx . Then, 

 0

1
( ) ln

2
r

u r
rπ

∗ = −
 
 
 

 ,    cr = = −r x x  (9) 

obeys the equations 

 
2 ( ) ( )u r δ∗∇ = − r ,   ( ) 0cu r∗

∂Ω
=  . (10) 

     In view of the Gauss divergence theorem, Eqs. (8)–(10) can be rewritten as 
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( )
( , ) ( , )

( )c

c
c

u
u t u t d

∗

∂Ω

∂ −
+ Γ +

∂∫
x x

x x
n x

 

 ( ) ( )( , )
( , ), ( , ) 0

c

cu t
f u t v t u d

t
γ ∗

Ω

∂
+ − − Ω =

∂
 
  

∫
x

x x x x  (11a) 

( )
( , ) ( , )

( )c

c
c

u
dv t d v t d

∗

∂Ω

∂ −
+ Γ +

∂∫
x x

x x
n x

    

 ( ) ( )( , )
( , ), ( , ) 0

c

cv t
g u t v t u d

t
γ ∗

Ω

∂
+ − − Ω =

∂
 
  

∫
x

x x x x . (11b) 

     Recall that the derived LIEs do not involve normal derivatives of the field 
variables ( , )u tx and ( , )v tx on the boundary c∂Ω .  
     Besides adopting the local weak formulation, we employ the moving least-
squares (MLS) approximation [9] for the field variable 

( , ) { ( , ), ( , )}w t u t v t∈x x x in order to receive completely mesh-free formulation. 

Then, 
1

ˆ( , ) ( , ) : ( ) ( )
n

a a

a
w t w t w t φ

=
≈ = ∑x x x     , (12) 

where ( )aφ x is the shape function associated with the node ax and the expansion 

coefficient ˆ ( )aw t is the nodal unknown which is different from the nodal value 

( , )aw tx , in general.  Note that the nodal points are spread freely in (Ω∪∂Ω ) 
without any connectivity among the nodes. The derivatives of the field variables 
can be approximated as derivatives of (12). Recall that the evaluation of the 
shape function at each point requires a computational procedure which prolong 
the computational time. The computational procedure is becoming more time 
consuming with increasing the order of the derivatives of the shape functions. 
Moreover, the accuracy of the derivatives is decreasing with increasing their 
order [10]. Fortunately, in the present formulation the derivatives of the field 
variables are reduced to the 1st order and they are evaluated only at the nodal 
points instead of the integration points.  
     Collocation of the LIEs (11) at interior nodes c ∈Ωx , while the prescribed 

boundary conditions (2) at boundary nodes b ∈∂Ωx , with using the MLS-
approximations for field variables and their derivatives, we obtain the system of 
the ordinary differential equations for unknowns ˆ ˆ{ ( ), ( )}a au t v t , ( 1, 2,...,a n= ) 

 

( ) ( )
1 1

ˆ ( ) ˆ ( ) ( , ), ( , ) 0
c

an n
ca a ca c

a a

u t
A u t B f u t v t u d

t
γ ∗

= = Ω

∂
+ − − Ω =

∂
∑ ∑ ∫ x x x x    (13a) 
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( ) ( )
1 1

ˆ ( ) ˆ ( ) ( , ), ( , ) 0
c

an n
ca a ca c

a a

v t
A d v t B g u t v t u d

t
γ ∗

= = Ω

∂
+ − − Ω =

∂
∑ ∑ ∫ x x x x  (13b) 

 1
ˆ ( ) 0

n
a ba

a
u t D

=
=∑  ,      

1
ˆ ( ) 0

n
a ba

a
v t D

=
=∑  ,      at b ∈∂Ωx  (14) 

where  

 ( )( )
c

ca a cA u dφ ∗

Ω

= − Ω∫ x x x ,     

( )
( ) ( )

( )c

c
ca a c a

u
B dφ φ

∗

∂Ω

∂ −
= + Γ

∂∫
x x

x x
n x

,   ( )
a

ba bD
φ∂

=
∂

x
n

  . (15) 

Recall that the last integral terms in (13) involve a non-linearity depending on 
the kinetics of the considered reaction-diffusion system.  

3.1 Approximate integrations 

The shape of the sub-domains is arbitrary. In order to facilitate the integrations 
involved in the LIEs, we shall consider circular sub-domains centred at interior 

nodes and with radius 0r . Then, the integration over c∂Ω is reduced to the 
angular integration which can be performed by using the standard Gauss-
Legendre quadrature rule as 

( ) 2

1 0 2 0
0( )

1
: ( ) ( cos , sin )

2c

c
ca a a c c

u
C d x r x r d

π
φ φ ϕ ϕ ϕ

π

∗

∂Ω

∂ −

∂
= Γ = − + + =∫ ∫

x x

n x
x  

( )1 0 2 0
1

1
cos (1 ), sin (1 )

2

N
a c c

g g g
g

w x r s x r sφ π π
=

≈ − + + + +∑ , 

( )ca a c caB Cφ≈ +x   ,  (16) 
where gw , [ 1,1]gs ∈ − are the Gaussian weights and integration points.  
     The domain integrals can be rearranged as follows 

 ( ) ( ) ( )0 2
4 40

0 0
00

( ) ( ) ln ( )
2c

r
c c crr

h u d h r dr O r h O r
r

∗

Ω

− Ω = − + = + 
 
 

∫ ∫x x x x x

  

  

(17) 
     Assuming the radius of sub-domains to be sufficiently small, one can neglect 

the terms ( )4
0O r .  Thus, 
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2

0 ( )
2

ca a cr
A φ≈  

 
 

x  (18) 

( ) ( ) ( )
2

0( , ), ( , ) ( , ), ( , )
2c

c c cr
f u t v t u d f u t v t∗

Ω

− Ω ≈  
 
 

∫ x x x x x x   

 

(19a) 

( ) ( ) ( )
2

0( , ), ( , ) ( , ), ( , )
2c

c c cr
g u t v t u d g u t v t∗

Ω

− Ω ≈  
 
 

∫ x x x x x x     . (19b) 

     Now, the system of the non-linear ODE (13)-(14) becomes 

  

{ }ˆ
ˆ

t

d
t

∂
+

∂ − =
∂
+

∂

 
     
     

     
 

U
V

M K 0 F 0
G 0

0 M K
  , (20) 

where M , K  are ( n n× ) matrices,  

,

0,

da d
da

d

A
M

∈Ω
=

∈∂Ω





x

x
   ,      

,

,

da d
da

da d

B
K

D

∈Ω
=

∈∂Ω





x

x
 ,      ( , 1, 2, ... ,d a n= ) 

 
{ }1ˆ ˆ ˆ( ),..., ( )

Tnu t u t=U ,   { }1ˆ ˆ ˆ( ),..., ( )
Tnv t v t=V ,    { }1,...,

TnF F=F  ,       

{ }1,...,
TnG G=G  , 

( )2
0

( , ), ( , ) ,

2 0 ,

d d d
d

d

f u t v tr
F γ

∈Ω
=

∈∂Ω

 
 

  

x x x

x

 

  , 

( )2
0

( , ), ( , ) ,

2 0 ,

d d d
d

d

g u t v tr
G γ

∈Ω
=

∈∂Ω

 
 

  

x x x

x

 

  

. 

3.2 Time discretization 

For approximation of the time evolution within the interval 
1[ , ] [ , ]k k k kt t t t t+ = + ∆ , we adopt the θ -method, when 

1 1ˆ ˆ ˆ ˆ
(1 )

a a a a
k k k kw w w w

t t t
θ θ+ +− ∂ ∂

= + −
∆ ∂ ∂

,       ˆ ˆ ˆ ˆ( ) { ( ), ( )}a a a a
k k k kw w t u t v t= ∈  ,  

 0 1θ≤ ≤ . (21) 
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     Now, in view of (20) and (21), we obtain the system of nonlinear algebraic 
equations for 2n unknowns 1 1ˆ ˆ{ , }a a

k ku v+ + , ( 1,...,a n= ) 

 { }1

1

ˆ 1
ˆ

1

k

k

k

k

t
t

d t
θ

θ
θ

+

+

+

+

+ ∆
− ∆ =

+ ∆

  
  

   
U
V

FM K 0
G0 M K

 

 
{ }ˆ

ˆ
(1 )

(1 )
(1 )

k

k

k

k

t
t

d t
θ

θ
θ

− − ∆
+ − ∆

− − ∆

  =   
   

U
V

FM K 0
G0 M K

, (22)

 
which should be solved subsequently for ( 0,1,...,k F= ). The subscript “ k ” in 

the column vectors ˆ
kU , ˆ

kV , kF , kG means that these vectors are taken at the 

time instant kt . The initial values 0ˆ aw can be obtained from the initial values 

( ,0)cw x by using the approximations 

 0
1

ˆ ( ) ( ,0)
n

a a c c

a
w wφ

=
=∑ x x   ,   ( 1,...,c n= ) .               (23) 

     The nonlinearities are involved in F and G terms and they can be treated 
iteratively in each time step by replacing 1k+F and 1k+G  in the initial iteration 
by kF and kG  from the last iteration of the previous time step.   

4 Numerical examples 

Let us consider the Schnakenberg model which is one of the most interesting 
Turing models in pattern formation. The Schnakenberg model in the 
dimensionless form is as follows [2] 

 ( )2 2u
u a u u v

t
γ

∂
= ∇ + − +

∂
 ,     ( )2 2v

d v b u v
t

γ
∂

= ∇ + −
∂  

 (24) 

which is a special case of Turing system (1) with 2f a u u v= − +  ,    
2g b u v= − , and 2Lγ  being scale dependent. The uniform positive steady 

state 0 0( , )u v is 

 0u a b= + ,    0 2( )

b
v

a b
=

+
 ,  0b >  ,   0a b+ >  (25) 

and the inequalities (7) results in conditions 
30 ( )b a a b< − < + ,      2( ) 0a b+ > ,    3( ) ( )d b a a b− > +   

22 4( ) ( ) 4 ( )d b a a b d a b− − + > + 
    
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which define a domain in ( , , )a b d -parameter space, called the pattern formation 
space (or Turing space), within which the mechanisms is unstable to certain 
spatial disturbances of wavenumbers k determined by the boundary conditions 

and falling into the interval 2 2 2
1 2k k k< <  with [2] 

( )
1/222 3 3 4

1(2) ( ) ( ) ( ) ( ) 4 ( )
2 ( )

k d b a a b d b a a b d a b
d a b
γ

= − − + − − + − +
+

   
     

  

  (26) 
Since 2Lγ  is scale dependent, increasing the size of the domain yields larger 
limit values of the wave numbers 1k and 2k  which results in new shorter wave 
lengths of allowable patterns.  
     In the presented examples, we shall illustrate the influence of the parameters, 
size and shape of the domain on the pattern formation and the shape of patterns.  
     In numerical calculations, we have used fixed parameters for the shape 
parameter of Gaussian weight functions 0.7c h= , and for the radius of local 
subdomains  0 0.05r h= . In all contour graphs, coloration is determined by a 
constant threshold value, 0u  for u  and 0v  for v , such that in the regions with 
white colour, 0u u< and 0v v<  while the regions with the concentration 

0u u> and 0v v>  are coloured with green. The results confirm that the profiles 

of the function v are always 180o  out of phase to those of u and therefore only 
the profiles of u are presented. 

Example 1 

Let us analyse the considered problem in the domain [0,1] [0,1]Ω = ×  with 262 
nodal points. The parameter 100γ = is fixed and parameters ( , , )a b d are chosen 
in the Turing space as 0.1305a = ,  0.7695b = ,  20d = . This problem is also 
considered in [11, 12]. The time step is  0.005t∆ =  and two iterations are used 
in each time step for consideration of nonlinear terms. Initial conditions read: 

 ( , ,0) pu x y a b u= + + ,  { }3 2 210 exp 100 ( 1 / 3) ( 1 / 2)pu x y−= − − + − 
  ,  

  
2

( , ,0)
( )

b
v x y

a b
=

+
 

where pu is a small perturbation to the homogeneous steady state 0 0( , )u v . 
Fig. 1 presents the process of the pattern formation. 
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                   (a) 0.01t =                                                   (d) 1t =  
          

            
                    (b) 0.1t =                                                    (e) 2t =  
 

           
                    (c) 0.6t =                                                    (f) 5t =  

Figure 1: The process of pattern formation with parameters in Example 1. 

Example 2 

To see the effect of parameter γ on the pattern formation, we fix all parameters as 
in Ex. 1 and study the model with different values of γ. The results at the time 
instant 5t =  with 10, 50, 75, and 100γ =  are presented in Fig. 2. The figures on 
the l.h.s. are contour plots corresponding to standard colour plots in the r.h.s. It 
can be seen that increasing the parameter γ results in shortening the lengths of 
allowable patterns (i.e., in increasing the wavenumbers in accordance with 
Eq. (26)). 
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                                                          (a) 10γ =  

    
                                                       (b) 50γ =  

      
                                                      (c) 75γ =  

       
                                                      (d) 100γ =  

Figure 2: Pattern formation with different values of γ  at time instant 5t = . 
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5 Conclusions 

Pattern formations in nonlinear reaction diffusion systems combining local 
activation with long range inhibition were numerically simulated by the aid of 
Local Integral Equation method. The weak formulation on local subdomains was 
developed for solution of initial-boundary value problems for the set of nonlinear 
governing partial differential equations. Spatial variations of the field variables 
were discretized by the MLS approximation. Special techniques were proposed 
to numerically evaluate the integrals appearing in the LIE formulation. A one 
step finite difference method was adopted for discretizing the time variable. The 
final system of nonlinear equations was treated iteratively within each time step. 
In order to verify the accuracy of the proposed method, we considered the 
Schnakenberg model which is one of the most interesting Turing models in 
pattern formation. The dependence of pattern shape on the initial and boundary 
conditions, size and shape of the analysed domain were studied. 
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