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Abstract

In this work we explore the applicability of the RBF method to laminar flame
propagation modeling. This method is specially well suited for the solution
of problems with complex geometries and irregular boundaries where spectral
methods can not be applied. Another important advantage is that the method is
independent of the dimension of the problem and, therefore, it is very easy to apply
in 3D problems with complex geometries. We use both the global and the local
(RBF-FD) versions of the method and we show its applicability in the solution of
flame propagation problems in one, two and three dimensions using equispaced
and non-equispaced nodes.
Keywords: flame propagation, Meshless methods, RBF global method, RBF-FD.

1 Introduction

Premixed flame propagation is an important topic in combustion research with
many applications in engineering and industry safety. Thus, it is important to
understand this physical process which very often takes place in complex shaped
domains. One important tool to achieve this goal is the numerical simulation of the
equations describing flame propagation. The purpose of this work is to explore the
applicability of RBF methods to laminar flame propagation modeling. The main
feature of these methods is its mesh-independence, relying not on the location but
on the distance between RBF centers. This fact makes RBF methods basically
the same for any dimension and for any shape of the domain. Furthermore,
they are conceptually simple and easy to implement. There are two different
formulations of the RBF method: the global RBF method [1, 2] and the local
RBF method [3–5] also known as RBF-generated finite differences (RBF-FD).
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In the global RBF formulation, full differentiation matrices are constructed based
on RBF interpolants. This formulation is spectrally convergent independently of
the distribution of RBF centers. Its principal drawback is that, as the overall
number of centers increases, the condition number of the differentiation matrix
increases, and this fact restricts the applicability of the method to large scale
problems where a great number of RBF centers. In the RBF-FD formulation, the
spectral convergence is lost. However, the method has the great advantage that the
resulting differentiation matrices are sparse and well-conditioned even for large
scale problems in complexly shaped domains. Accuracy is strongly dependent on
the shape parameter of the RBF. References [6] and [7] address the problem of
optimal selection of the shape parameter in the global RBF and RBF-FD method
respectively.

2 Thermo-diffusive model of flame propagation

The thermo-diffusive model of flame propagation in ducts can be written as

∂T

∂t
= ΔT + ω(T, Y ) (1)

∂Y

∂t
=

1

Le
ΔY − ω(T, Y ) (2)

where Δ is the laplacian, Y the mass fraction of the reactant, T the non-
dimensional temperature, and ω(T, Y ) the nondimensional reaction rate which is
assumed to follow an Arrhenius law of the form

ω(T, Y ) =
β2

2Leu2p
Y exp

(
β (T − 1)

1 + α(T − 1)

)
(3)

The non-dimensional parameters Le, β, up and α are the Lewis number, the
Zeldovich number, the planar flame burning velocity and the heat release ratio,
respectively. In reference [8] the following asymptotic formula for the planar
burning velocity was derived,

up = 1 − 3α − 2.344 + Le
β

+ O(β−2)

In the rest of the paper we will consider β � 1 and, therefore, we will assume
up = 1. Alternatively, these equations can be written in a moving frame [9]

by adding the corresponding convective terms, V (t)
∂T

∂z
, V (t)

∂Y

∂z
, where z is

the coordinate along the duct, and V (t) is the velocity of the moving frame,
usually chosen as the flame propagation velocity. In this way, the flame appears
as stationary in the moving frame.

In the following, we present some numerical experiments to check the results of
the analyses of the instability of the propagation of a plane flame front carried out
by Sivashinsky [10,11]. The main result being that if the inequality Le ≤ 1− 2/β
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holds, then the flame is unstable to perturbations whose wavelength is larger than
λ0 = η π /

√
η − 1, where η = (β/2) (1 − Le). Thus, in two dimensions, we

will use the following initial and boundary conditions

T (y, z, 0) =

{
exp (z − f(y)) if z ≤ f(y)

1 if z > f(y)
, (4)

Y (y, z, 0) =

{
1 − exp [Le(z − f(y))] if z ≤ f(y)

0 if z > f(y)
, (5)

T (y,−∞, t) = 1 − Y (y,−∞, t) = 0 , (6)

T (y,∞, t) = 1 − Y (y,∞, t) = 1 , (7)

∂T

∂y
(±R, z, t) =

∂Y

∂y
(±R, z, t) = 0 (8)

where y and z are the transversal and longitudinal coordinates respectively,R is the
duct width, f(y) = μ cos (2 π y / λ), and λ is the wavelength of the perturbation to
the flame front. Changing λ changes the wavelength of the perturbation. If λ = ∞,
the initial profile is a flat temperature and mass fraction front.

2.1 RBF global method

To solve equations (1-2), we look for an approximate solution in the space spanned
by a set of translated Radial Basis Functions (RBF). Thus,

T (t, x) =

N∑
k=1

ak(t)φk(rk(x), cT ) (9)

Y (t,x) =

N∑
k=1

bk(t)φk(rk(x), cY ) (10)

where x represents the vector (y, z), {xk}, k = 1, . . . , N is a set of N RBF
centers, rk(x) =‖ x− xk ‖ is the distance to the RBF center, and φk(rk(x), c) is
an RBF function centered at xk. As RBFs, we use Hardy’s multiquadrics [12]

φk(‖ x− xk ‖, c) =
√
(y − yk)2 + (z − zk)2 + c2 . (11)

The coefficients ak(t) and bk(t) are computed by collocation of (9-10) into the
PDE (1-2) and into the boundary conditions (6-8). At interior nodes, equation (1)
leads to

N∑
k=1

a′k(t)φk(rk(xi), cT ) =
N∑

k=1

ak(t)Δφk(rk(xi), cT ) + ω(T, Y ) . (12)
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At boundary nodes corresponding to z = ±∞, equations (6-7) lead to

N∑
k=1

a′k(t)φk(rk(xi), cT ) = 0 . (13)

Similar equations are obtained for the mass fraction Y by using b′k(t) and bk(t)
instead of a′k(t) and ak(t).

The boundary condition (8) implies

0 =

N∑
k=1

ak(t)
∂φk(rk(xi), cT )

∂y
. (14)

These equations can be written in matrix form as

M

[
a

b

]′
= f(a, b) (15)

where the mass matrix M has dimensions (2N) × (2N). The elements Mik in
rows of M corresponding to interior nodes (12) or to boundary nodes at z = ±∞
(13) have values φk(rk(xi), c). The elements Mik in rows of M corresponding to
lateral boundary nodes (14) are zero. Thus, matrix M is singular and therefore
equation (15) is a differential-algebraic equation (DAE). To solve it we use
Matlab’s function ode23t which can solve DAEs of index 1.

The right-hand side vector f at interior nodes has the value,

fi(a, b) =

N∑
k=1

ak(t)Δφk(rk(xi), cT ) + ω(T, Y ) (16)

for rows corresponding to temperature (i ≤ N ). For rows corresponding to mass
fraction at interior nodes (i > N ) there is an analogous expression with bi
replacing ai and with the Lewis number Le dividing the first term in the right-
hand side, and with a minus sign in front of the reaction term ω. For boundary
nodes, fi has the value 0 or 1 depending on the boundary condition.

To start the time integration of equation (15) appropriate initial values for a0 and
b0 are needed. These are obtained by RBF interpolation of the initial distribution
of temperature (4) and mass fraction (5) complying with boundary condition (8).

2.1.1 Numerical results
The initial profiles for temperature and mass fraction (4, 5) exhibit a discontinuity
in the first derivative at the location of the flame front. RBF interpolation of
these initial profiles to compute the initial values of a0 and b0, results in initial
distributions of temperature and mass fraction with large oscillatory behavior near
the discontinuity. This is due to a Runge type phenomenon, which is well known
to occur in RBF interpolation [13, 14]. This is not surprising since in the limit of
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Figure 1: RBF nodes (·) and collocation nodes: (�) equation (13), (◦) equation
(14).

large shape parameter, RBF interpolation is equivalent to Lagrange polynomial
interpolation where the Runge phenomenon is well known.

One alternative to eliminate the Runge phenomenon is to use the method that
was proposed by Fedoseyev et al. [15]. It is based on enforcing collocation of
the PDE in boundary nodes, so that both the boundary condition and the PDE are
imposed in those nodes. In our case we use Fedoseyev’s method only in lateral
boundary nodes. However, since the number of equations increases, it is necessary
to introduce additional RBF centers to match the number of unknown coefficients.
Figure 1 shows the nodes that we have used to implement the method. There are
nz = 41, ny = 21 equispaced nodes in the longitudinal and transversal direction.
There are also 78 additional RBF centers which are located outside the domain
at distance Δy from the corresponding boundary nodes. Thus, in this case we use
861+78 = 939RBF centers. Equation (15) is a 1878×1878 system of differential-
algebraic equations of index 1. Also shown in Figure 1 is the initial flame location
f(y) = μ cos (2 π y / λ), with λ = 4, μ = 0.5.

Figure 2 shows the initial temperature distribution (left), and the temperature
distribution at t = 2 (right), corresponding to the case z∞ = −24, z∞ = 7,
R = 8, Le = 0.7, β = 10, α = 0.8. Notice that, using Fedoseyev’s method, the
Runge phenomenon has been completely eliminated from the initial profile. Also
notice that for t = 2, the perturbation to the flame front has disappeared and the
flame advances as a plane flame front. In fact, the flame is stable to perturbations
whose wavelengths are smaller than λ0 = 6 π

√
2 = 26.65. In the present case

λ = 4 is much smaller than the stability limit λ0.
If the wavelength of the perturbation is larger than λ0 the flame front becomes

unstable. Figure 3 shows the contour line of temperature T = 0.5 at times
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Figure 2: Temperature distribution at t = 0 (left) and t = 2 (right). z−∞ = −24,
z∞ = 7, R = 8, Le = 0.7, β = 10, α = 0.8, nz = 41, ny = 21.

z

y

−20 −15 −10 −5 0 5

−30

−20

−10

0

10

20

30

Figure 3: Contour line of temperature T = 0.5 for times t = 0, 1, . . . , 12.
z−∞ = −24, z∞ = 7, R = 36, Le = 0.7, β = 10, α = 0.8, nz = 41,
ny = 21.

t = 0, 1, . . . , 12 when the initial flame location f(y) = μ cos (2 π y / λ), λ = 72,
μ = 0.5. Notice that in this case the initial perturbation to the flame front does not
stabilize but, on the contrary, the amplitude of the perturbation grows with time.
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2.1.2 Anchored flame
An interesting problem is to consider a thermally anchored flame. This is achieved
by assuming that the channel walls are adiabatic except for z > za, where the wall
is heated to the adiabatic flame temperature (T = 1). Moreover, the initially planar
flame now tends to draw back towards the hot boundary (on the right) because a
flow of fresh mixture is introduced at the left end of the channel. This problem was
solved in references [16, 17] using adaptive numerical schemes. For this problem
equations (1, 2) are modified by adding to the right-hand side the convective terms
V ∂T/∂z and V ∂T/∂z respectively. The velocity V is constant and corresponds
to a uniform gas flow in the channel (it has to be large enough to insure that
the flame propagates towards the hot boundary). The boundary condition (8) is
replaced by

y = ±R

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

z ≤ za ⇒ ∂T

∂y
(±R, z, t) = 0

z > za ⇒ T (x,±R, t) = 1
∂Y

∂y
(±R, z, t) = 0

(17)

We consider the case when the initial flame location is at zf = −15 and a
uniform gas flow with speed V = 2.6 enters the channel from the left. The lateral
wall is kept at T = 1 for z > −10. A total of N = 861 collocation nodes and
897 RBF nodes have been used. The hot wall acts as a flame holder since the fresh
mixture cannot cross the hot region without burning. Therefore the boundary of
the flame remains attached at z = −10 and the flame front eventually converges
to a curved steady state.
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Figure 4: Steady state anchored flame. Left: level curves for T = 0.1, 0.3, 0.5,
0.7, 0.9. Right: temperature distribution.
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Figure 4 shows the resulting steady state solution for the anchored flame.
The left side of the figure shows the level curves and the right side shows the
temperature distribution. The curved front can be clearly appreciated.

One of the main advantages of meshless methods is the use of unstructured
nodes so that the labor intensive step of mesh generation is avoided. To show the
performance of the method when unstructured nodes are used we have solved the
anchored flame problem described in the previous Section using the nodes shown
in the left side of Figure 5. A total of N = 501 collocation nodes and 533 RBF
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Figure 5: Left: RBF nodes (·) and collocation nodes: (�) equation (13), (◦)
equation (14), (�) T = 1, ∂Y/∂y = 0. Right: Contour line of
temperature T = 0.5 for times t = 0, 1, . . . , 14. V = 2.6, xa = −10,
xin = −24, xout = 7, R = 5, Le = 0.7, β = 10, α = 0.8, N = 501.

nodes have been used. The right-hand side of the figure shows the corresponding
contour line of temperature T = 0.5 at times t = 0, 1, . . . , 14. The flame
converges to the same curved steady state which was obtained with structured
nodes although a significant smaller number of nodes has been used.

2.2 RBF Finite Difference method (RBF-FD)

In RBF-FD, spatial differential operators appearing in PDEs are approximated by
a weighted sum of the values of the sought function at some surrounding nodes.
Thus, it can be considered as a generalization of the classical FD method. While
in the global method the unknowns are the coordinates of the solution in the
functional space spanned by the RBFs, in the local method the unknowns are
the values of the solution at the scattered nodes, just the same as with the FD
method. However, in the FD method the weights are computed using polynomial
interpolation, and in the local RBF one they are computed by fitting an RBF
interpolant through its nearest neighbors [7]. In this section we will use Gaussians
as RBFs.
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2.2.1 Numerical results
We use a coordinate system moving with the flame. To this end, we attach the
frame of reference to some point x∗ moving with the forefront of the flame with
speed V (t). This velocity is determined by imposing at x∗ an arbitrary constant
temperature. After an initial transient period, the temperature distribution becomes
steady in the frame of reference attached to the flame, and the value V (t) becomes
stationary. This value is the constant flame speed relative to the wall.

The left side of Figure 6 shows the solution for the case Le = 1 and R = 15
with isothermal boundary conditions. We use a grid of 91 × 61 nodes, stencil
size n = 25, and time step Δt = 10−3 The flame structure has the so-called
mushroom-shape. Notice that the flame extinguishes near the wall and the reaction
rate increases smoothly towards the axis of the tube, where the flame structure is
almost planar. The right-hand side of the figure shows the corresponding results
for Le = 0.7 and R = 20.

r

z

0.9

0.8

0.7
0.6

0.1
0.20.3

0.9

0.8

−10 −5 0 5 10 15 20
−15

−10

−5

0

5

10

15

Le = 1

r

z

0.
9

0.8

1 0.9

0.8
0.7

−10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

20

Le = 0.7

Figure 6: Isothermal wall. Left: Le = 1, R = 15. Right. Le = 0.7, R = 20.
Upper half: isotherms. Lower half: fuel mass fraction, and reaction rate
contours.

Finally, we present the results of solving the three-dimensional model in a
duct of radius R = 8 with Le = 0.5. We have used 6300 nodes, stencil size
n = 35, and time step size Δt = 0.5 · 10−3. Figure 7 shows the steady state
flame structures computed using isothermal boundary conditions. The left side of
the Figure shows the isosurface T = 0.7 and the right side shows the longitudinal
section of the flame. Both reveal an axisymmetric structure similar to that obtained
in the corresponding two-dimensional case.

3 Conclusions

We have analyzed the applicability of the RBF global method to laminar flame
propagation modeling. The method is specially well suited to problems with
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Figure 7: Three-dimensional flame structure for Le = 0.5, R = 8 and isothermal
wall. Left: isosurfaces T = 0.7. Right: longitudinal section of the flame.

complex geometries and irregular boundaries where spectral methods can not
be applied. An additional advantage is that it is very easy to program and it is
independent of the dimension of the problem. Therefore, it is very well suited for
solving 3D problems with complex geometries.
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