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Abstract 

The method for dynamic analysis of shell structures interacting with a liquid is 
presented in this paper. The coupled problem is solved using a combination of 
reduced boundary and finite element methods. The axisymmetric structures, such 
as compound shells of revolution with internal baffles and Francis turbine wheel, 
are under consideration. The compound shell was the model of capacity for 
liquid storage. The tank structure is modelled by the finite element method and 
the fluid region is described by the direct boundary element method. The method 
relies on determining the fluid pressure from the system of singular integral 
equations using multi-domain approach. After applying the direct boundary 
element formulation in every sub-domain, the final system of equations with 
sparse matrix was obtained by use of matching conditions in the interfaces 
between sub-domains. The shell is considered as thin one, and Kirghoff–Lave 
linear theory hypotheses are applied. The liquid is ideal and incompressible. 
Differential equations of transient problem are solved numerically by the Runge–
Kutta method of 4th and 5th order. Numerical investigations of free and forced 
vibrations of the compound shells filled with the incompressible fluid under 
different loadings have been carried out. The example of the shell structure in a 
form of the Francis turbine sector is also under consideration. Here, a multi-
domain approach was compared with the hypersingular integral equation 
method. 
Keywords: fluid-structure interaction, free and forced vibrations, boundary and 
finite element methods, multi-domain approach. 
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1 Introduction 

Thin-walled shells are widely used in many industries including aerospace, civil, 
marine, petrochemical and nuclear engineering, power machine building, wind 
power engineering and transport. In many circumstances these shells are 
subjected not only to static loads but also to dynamic disturbances and filled with 
internal fluid. Usually they are filled with oil, flammable or toxic liquids. Such 
facilities are fuel tanks, liquid storage tanks, oil and propellant storage 
containers. The influences of both media on each other must not be neglected in 
stress-strength analysis of these structural elements. So the interaction between 
the sloshing liquid and the shell structure has been the challenging field of 
research in many engineering applications. In most cases, discrete techniques, 
such as the Finite Element Method (FEM) and the Boundary Element Method 
(BEM) have been employed and continuously further developed with respect to 
accuracy and efficiency. In fact, it did not take long until some researchers 
started to combine the FEM and the BEM in order to profit from their respective 
advantages by trying to evade their disadvantages. A detailed review on different 
numerical models for fluid-structure interaction can be found, e.g., in [1]. Several 
studies have been carried out in the different fields of sloshing liquids. 
Evaluation of the natural frequencies and corresponding mode shapes of liquid 
sloshing in a tank, linear and non-linear characters of the liquid flow, sloshing 
analysis in low and zero gravity, optimization and control of sloshing 
characteristics are some of researcher’s favorite fields. Such research is needed 
to better understand the processes and help reduce the probability and aftermath 
of these tanks destruction due seismic actions or shockwaves that can lead to 
environmental catastrophe. The dynamic analysis of shell structures is often 
performed by use the finite element programs [2]. But such 3-D finite element 
analysis, including the contained fluid is complex and extremely time 
consuming. In [3–6] authors offer the approach based on using the boundary 
element method to the problem of natural vibrations of the fluid-filled elastic 
shells of revolution, as well as to the problem of natural liquid vibrations in the 
rigid vessels. The research findings are summarized in [7]. Multi-domain 
methods, or domain decomposition methods based exclusively on boundary 
elements have also appeared for both interior and exterior problems of fluid-
structure interaction, e.g. [8–11]. The primary motivation for the multi-domain 
approaches for homogeneous domains stems from numerical considerations: by 
dividing up the original domain into smaller ones (termed macro-elements in e.g. 
[9]), one obtains a block-sparse algebraic system.  
     In this paper, the coupled problem of free and forced vibrations of shell 
structures interacting with the fluid is under consideration. For its solution we 
use combination of reduced finite and boundary element methods. The analysis 
consists of several stages, each represents a separate task. The frequencies and 
modes of shell vibrations in a vacuum are defined by the first stage. 
Displacement vector, that is the solution of the hydrodynamic problem, is sought 
as a linear combination of the natural modes of shell vibrations in vacuum. So 
we define the frequencies and free vibrations modes of elastic shell in the liquid 
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without including the force of gravity. Then we obtain the frequencies and free 
vibrations modes of liquid in rigid shell under force of gravity. The latter two 
problems are solved using reduced BEM. The method relies on determining the 
fluid pressure from the system of singular integral equations using multi-domain 
approach. After applying the direct boundary element formulation in every sub-
domain, the final system of equations with sparse matrix was obtained. Then we 
come to second order system of differential equations for forced vibrations of the 
shell partially filled with a liquid and solve it numerically using Runge–Kutta 
method. 

2 Problem statement 

Let us consider the coupled problem for shell structure interacting with a liquid. 
In this study the contained liquid is assumed to be inviscid and incompressible. 
Governing equations of motion for the liquid-structure system subjected to 
disturbing force are given by 
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Here , ,u v w  are the displacement components; ( )k
ijL  (і,ј=1,2,3) are differential 

operators; Q = (Q1, Q2, Q3) is the vector of disturbing force; ρ is the material 
density; h is the shell thickness, Pl is hydrodynamic pressure. Suppose that 
disturbing forces include wind, gravity and also seismic and impact waves. 
     Let , ,x y zv v v  are the fluid velocity vector components and the disturbing 
force Q is the sum of vertical gravitational and seismic horizontal forces. Then 
the fluid velocity vector can be expressed in the form 

( ) ; ; .yx z
l l s l l l

vv vp p pa t g
t x t y t z

∂∂ ∂∂ ∂ ∂
− = + − = − = +

∂ ∂ ∂ ∂ ∂ ∂
ρ ρ ρ ρ ρ    (2) 

Here ρl is the liquid density, ( )sa t  and g  are the horizontal seismic acceleration 
and acceleration of gravity. So the liquid pressure could be expressed in the form  

( )l l l sP p gz a t x= + ρ + ρ . 
     Suppose that the flow is potential. Due to the incompressibility condition the 
velocity potential φ satisfies the Laplace equation. The hydrodynamic pressure, 
according to the Cauchy-Lagrange integral, can be represented as follows 

( )0
s

l l

pp gz a t x
t

∂ϕ
= − − + −

ρ ∂ ρ
,    (3) 

where z is vertical coordinate of a point in the liquid. We denote a moistened 
surface of a shell through Sw and a free surface as S0. Let refer the Cartesian 
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coordinate system 0xyz connected with the shell. The free surface of the liquid S0 
coincides with the plane x0y in unperturbed state. 
     According to [10] we obtain the following boundary value problem for 
defining the unknown functions U and φ. 

( )l l sgz a t x Q+ +ρ φ+ +ρ =LU MU ; 

1,w P S
n t
∂φ ∂

= ∈
∂ ∂

;  0, P S
n
∂φ

= ζ ∈
∂

 ;  ( ) 00 ,l sg a t x P Sφ+ ζ +ρ = ∈  

where L, M are matrix operators corresponding to ijL  and inertial components, 
the function ζ describes the free surface. We will seek the natural modes of shell 
vibrations in the fluid as following  
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where functions ( , , )k x y zu are modes of natural vibrations in vacuum, ( )kc t  are 
unknown factors. 
     We will seek φ as a sum of two potentials 1 2φ = φ + φ . To determine φ1 we 
obtain the following boundary value problem: 
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w x y z t w x y z c t
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= ∑ , and functions ( , , )kw x y z are 

normal modes of the shell natural vibrations in vacuum. From eqn (3) and 
second one from (5) it follows 
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To determine φ1k  we have the following boundary value problems 
2
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kw P S
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To determine φ2 we have to solve the problem of fluid vibrations in the rigid 
vessel including gravitational force  

2
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n
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     The last equation in (8) follows from eqn (3) and represents dynamic 
condition on the free surface. Differentiating this equation with respect to t we 
come to the following equation for velocity potential in the rigid vessel 

2
2 00 ,g P S

n
∂φ

φ + = ∈
∂

     (9) 

Let us seek for the solution of this problem in the next form 

2 ( , , , ) ( , , )i tx y z t e x y zκφ = ψ . 

36  Boundary Elements and Other Mesh Reduction Methods XXXV

 
 www.witpress.com, ISSN 1743-355X (on-line) 
WIT Transactions on Modelling and Simulation, Vol 54, © 2013 WIT Press



For function ψ we will have the following problem of free harmonic fluid 
vibrations 

2 0∇ ψ = , 10 , P S
n

∂ψ
= ∈

∂
, 

2

0, P S
n g

∂ψ κ
= ψ ∈

∂
. (10) 

Solving this problem one can obtain the number of eigenvalues κk and 
corresponding eigenfunctions ψk. After eqn (10) is solved we are looking for 
function φ2 in the form 
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1 1
1

( , , , ) ( , , ) ( )
m

k k
k

x y z t x y z c t
=

φ = φ∑  ,  2 2
1

( , , , ) ( ) ( , , )
n

k k
k

x y z t d t x y z
=

φ = φ∑  . 

Then  
2 2 2

1 2 0∇ φ = ∇ φ +∇ φ = , 1 2
1,w P S

n n n t
∂φ ∂φ ∂φ ∂

= + = ∈
∂ ∂ ∂ ∂

. 

On free surface it is required 

0, P S
n
∂φ

= ζ ∈
∂

 ; ( ) 00 ,sg a t x P Sφ+ ζ + = ∈ . 

From eqns (8) and (11) we obtain the expression for the function ζ that describes 
the free surface perturbations  
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We have 1 0φ =  from relation (7). So the equality ( ) 0sg a t xφ+ ζ + =  leads to 
the system of differential equations 
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Using for functions φ2k  the relations 
2
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Due to orthogonality of natural modes of fluid vibrations in a rigid vessel we 
have after dot product of the above equation and functions φ2l 

( ) ( )( )2 1
2
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,

m
k
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 . 

When functions φ1k and φ2k are found we substitute them in eqn (2) and obtain 
the following equation 
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(12) 

Suppose that ωk, uk are natural frequencies and free vibration modes of the shell 
in vacuum. Then the following relationships are valid 

2
k k ku u= ωL M ,  ( , )k j kju u = δM .   (13) 

Considering the result of dot product of eqn (12) by uj and taking into account 
relationships (13), we come to the next set of n+m second order differential 
equations  
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     So, the scheme of the solution to considered problem consists of following 
steps. First, we have to obtain the natural frequencies and mode shapes of free 
vibrations of the elastic shell in vacuum. The problem is solved using FEM. 
Second, it is necessary to obtain the frequencies and free vibration modes of 
liquid in the rigid shell under force of gravity. Then we define the frequencies 
and free vibration modes of elastic shell interacting with a fluid without 
including the force of gravity. These two problems are solved using single and 
multi-domain BEM. And finally we solve the set of second order differential 
equations using the4th and 5th order Runge–Kutta method. 

3 Multi-domain approach 

We consider the shell structure with internal baffles for damping sloshing. 
Sloshing is defined as the motion of free surface of a liquid in a partially filled 
tank or container. The inadequate slosh suppression can lead to failure of 
spacecrafts. For example, the early Jupiter flight was unsuccessful because the 
stepped-pitch program has stepping intervals near the fundamental slosh 
frequency and the sloshing arisen thereinafter caused the vehicle to go out of 
control. At first we consider the cylindrical shell with internal baffles (Figure 1). 
Note that multi-domain approach can be applied also to axisymmetric structures 
interacting with a fluid as Francis turbine (Figure 1). 
     The first stage is to define the velocity potential φ1 and therefore the partial 
potentials φ1k. To define each of these potentials we apply the direct formulation 
of boundary element method. To apply the multi-domain approach we divide the 
fluid domain into sub-domains. 
     According to Figure 1 we obtain the following sub-domains:  

1 2 3; 1, 2,3i i i i iΣ = σ σ σ =  . 
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Here  
1 2 3
1 1 2 1 1; ; ;b wS S Sσ = σ = σ = 1 2 3 1 2 3

2 2 2 1 2 2 3 1 3 0 3 3; ; ; ; ; .w wS S S S S Sσ = σ = σ = σ = σ = σ =  
 

 

 

Figure 1: Cylindrical shell with internal baffles and sector of Francis turbine. 

     We denote as ( )3,2,1=iSwi  the parts of cylindrical shell Sw between surfaces 
Sb and S2, S2 and S1, S2 and S0 accordingly. So for each partial potential φ1k we 
obtain the following system of singular integral equations (the index 1k here is 
omitted for simplicity) 
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∂
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j
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i  in the system (15), but only 9 

equations here. However, some of these unknowns are given at corresponding 
surfaces. From boundary conditions we have the following values 
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Hence there are exactly 9 unknowns in 9 equations. 
     The problem of defining the partial potentials φ2k by using sub-domain 
approach is reduced to the eigenvalue problem with a block-sparse matrix. 
     We use furthermore the cylindrical coordinate system and represent unknown 
functions as Fourier series by circumferential coordinate 
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( ), cosw w r z= αθ ,  ( ), cosr zφ = φ αθ .   (16) 
Numerical solution of the obtained systems (15) was accomplished as in [10, 13, 
14]. The boundary element method with constant approximation of unknown 
densities on elements was used [14]. Integration by the fluid volume was reduced 
to integrals along the shell meridian and along the radius of the liquid free 
surface. It would be noted that the only FEM analysis requires 3D modeling to 
solve this coupled problem. That leads to essentially more computer timetable 
and it does not allow using effectively such methods in computer monitoring 
problems.  

4 Analytical solution test 

We obtain the analytical solution for free vibrations of cylindrical shell fully 
filled with an ideal incompressible fluid. First we consider the normal modes and 
frequencies in vacuum. According to [15] consider the following expressions for 
Lij in eqn (1): 

 

2 2 2
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= − δ + = = − δ   ∂ ∂θ∂ ∂θ 
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∂ ∂
= + ∇ ∇ ∇ = + δ δ = =

∂ ∂θ
 
  

 (17) 

Here R is the shell radius, h is the shell thickness and L is the shell length, ν is 
Poisson’s ratio, x and θ are longitudinal and circumferential coordinates. For 
motion in vacuum we suppose Pl = 0. Consider the following boundary 
conditions on top and bottom of the shell:  
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E is the modulus of elasticity; D – the bending stiffness. 
     Below the analytical solutions of these equations for elements of Fourier 
series with respect to the circumferential coordinate are represented 

( ) ( ) ( ) ( )
1 0

, , cos sin ; , , sin cos ;n mn n mn
m m

m x m xu t x n A t v t x n B t
L L

∞ ∞
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π π
θ = θ φ = θ∑ ∑
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( ) ( )
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m xw t x n C t
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∞

=

π
θ = θ∑ .   (18) 

     Accordingly to described algorithm consider now the problem of evaluating 
the frequencies and free vibration modes of elastic shell fully filled with a liquid 
without including the force of gravity. It is required to define the velocity 
potential φ as the solution of following boundary value problem for Laplace 
equation in cylindrical coordinates  

 011
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under boundary conditions in the form 
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Below we present the analytical solution of the boundary value problem (19)–
(20) that was obtained using the separation of variables method 

 ( )
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( )

1
0

1 1
1 1

1, , , cos cos
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nn mn
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 
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It follows from eqn (21) and Cauchy–Lagrange integral (3) that the pressure at 
cylindrical wall is equal to 
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1 cos cos
n

nn mn
l l l n
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 

. 

Here ( )nI z  are modified Bessel functions of the first kind. Hereinafter we use 
expression (21) for comparison between analytical and numerical solutions. 

5 Numerical results 

First we consider the cylindrical shell fully filled with a fluid and apply the 
boundary integral equation technique for determining the fluid pressure. The 
single-domain and two-domain BEM were used. The cylindrical shell without 
baffles has following parameters: the shell radius R =1.0 m, the length L =2.0 m. 
To validate numerical algorithm we have solved the singular integral eqns (15) 
using two methods: by single-domain and two-domain BEM approach. Here the 
normal modes in the form ( ) ( )1, cos cos ; 1,2kw x k xL k−θ = π θ =  were used. 

The following analytical expressions for the potentials φk matched to these 
modes accordingly to eqn (21)  

( ) ( ) ( ) ( ) 11
1 1, cos cos , 1,2k x k xL I k k I k k−− ′φ θ = θ π πδ π πδ =   . 

Here δ was defined in eqns (17). According to the concept of [10] the integration 
by the fluid volume was reduced to integrals along the shell meridian and the 
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liquid free surface radius, so for each harmonic mode cosnθ we obtain the 
separate system of singular integral equations. 
     The comparison between numerical and analytical results is shown in  
Figure 2. 
 

 

Figure 2: Numerical and analytical solutions. 

     Here the solid lines denote the analytical solutions in the form 

( ) ( ) ( ) ( ) 11
1 1cos ; 1,2k x k xL I k k I k k−− ′ϕ = π πδ π πδ =   , numbers 1 and 2 

correspond to index k; by dot lines the single-domain BEM solutions are shown 
that were obtained at n1 = m1 = 10 boundary elements along the shell meridian 
and the free surface radius, and dash lines are solutions obtained by using two-
domain BEM with n1 = m1 = 10 boundary elements in each domain. Note that 
using two-domain BEM does not increase the dimension of matrices in 
numerical simulation.  
     The next numerical result is concerned with defining the added mass matrix 
for a mechanical structure interacting with an incompressible fluid. The Francis 
turbine wheel was considered here as an example of such fluid-structure 
interaction. Two methods were implemented in numerical simulation. First of 
them relies on hypersingular integral equations obtained from the indirect 
boundary element formulation. The infinite liquid volume was considered here 
and the blades were modeled by thin surfaces. The implementation of boundary 
integral equation technique led to following system of hypersingular equations 

( )
( ) ( )

( )2
0

1 00

1 1 ; 1,2,...
4

b

i

N
j

i i i b
i j jj

w
d j N

tn n= Ω

∂∂
γ Ω = =

π ∂−∂ ∂
∑∫∫

x
x

x xx x
, 

where Nb – the number of blades in Francis turbine wheel, ( ) , 1, 2,...,i bi Nγ =x  
are unknown densities; each of them is proportional to the pressure drop on both 
sides of the blade. Another approach to numerical simulation of the pressure on 
blades is based on using the direct boundary element formulation and multi-
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domain method. Here the system of singular integral equations analogical to (15) 
was solved. The advantage of this approach consists in possibility to consider the 
finite volume of fluid. In Table 1 the comparison between experimental data and 
numerical results obtained by two methods is presented. These data were 
obtained for the model of the wheel of Francis turbine in Piedra del Aguila 
power plant (Argentina). 

Table 1:  Comparison between numerical and experimental frequencies. 

 Numerical results, Hz Experimental data, Hz 
Frequency’s 

number 
Hyper-
singular 
integral 
equation 

Direct 
formulation, 
multi-domain 

BEM 

I.I. Polzunov SDA 
on Research and 
Design of Power 

Equipment 

ОJSC 
“Turboatoom” 

1 24.00 22.2 22.5 21.6 
2,3 29.20 28.7 28.5 28.5 
4,5 31.50 32.3 31.1 32.7 
6,7 37.00 35.3 33.3 37.2 
8 52.50 45.3  40.2 

 
     Within the framework of this research the numerical simulation was also 
accomplished for rigid end elastic cylindrical, conical and hemi-spherical shells 
subjected to impulse and seismic loads. These problems were investigated in [10, 
14] by using single-domain BEM. The new results were obtained with multi-
domain BEM. Comparison between results testifies the efficiency and accuracy 
of multi-domain approach. 

6 Conclusions 

The numerical procedure based on a coupling the finite element formulation and 
the boundary element method is developed for numerical analysis of fluid-
structure interaction. We introduce the representation of the velocity potential as 
the sum of two potential corresponding to problem of fluid free vibrations in the 
rigid shell under force of gravity and to problem of elastic shell free vibrations 
with fluid without including the gravitational component. Integration by the fluid 
volume is reduced to integrals along the shell meridian and along the radius of 
the liquid free surface. It is the basic advantage of our method based on a 
combination of the boundary integral equation method with single and multi-
domain approach, finite element method, expansion into Fourier series and mode 
superposition. The shell structure in a form of the Francis turbine sector was also 
under consideration. Here multi-domain approach was compared with 
hypersingular integral equation method. 
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