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Abstract 

In this paper, the local boundary integral equation (LBIE) method employing the 
simplified approach for imposing the boundary conditions is used to solve the lid 
driven cavity problem described by the velocity-vorticity formulations of the 
Navier-Stokes equations. The objective of this study is to investigate how the 
differentiation of the radial basis functions carried out to approximate the spatial 
gradients in the simplified approach affects the accuracy of the numerical 
solutions in problems where knowledge of the spatial gradients is of 
significance. The numerical results were compared with benchmark solutions 
and with those obtained using the radial basis integral equation method; an 
integral equation based meshless method that does not involve the differentiation 
of the RBF to approximate the spatial gradients. 
Keywords: velocity-vorticity formulation, radial basis functions, meshless 
methods, Navier-Stokes equations, integral equations. 

1 Introduction 

The local boundary integral equation (LBIE) method is a meshless method that is 
formulated around the integral equation and the use of a companion solution [1]. 
One of the difficulties when implementing the LBIE is that integration over part 
of the global boundary is required, which involves near-singular and singular 
integrals. Although global boundary integration can be avoided by imposing the 
boundary conditions (BCs) using collocation schemes [1], this approach is based 
on the strong formulation and requires a highly accurate interpolation scheme to 
yield accurate numerical results. 
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     Recently, Ooi and Popov [2] proposed a simplified method for imposing the 
BCs in the LBIE. This alternative LBIE method, hereafter denoted by ALBIE, 
maintains the weak formulation by enforcing the integral equation derived using 
the fundamental solution and the Green’s second identity on the boundary. The 
subdomains for the nodes at the boundary remain circular and unknown field 
variables exterior to the solution domain are extrapolated using the surrounding 
nodes. All the integrations are performed over the circular subdomain, which 
avoids the near-singular and singular integrals since the source point is always at 
the centre of the subdomain. 
     Provided that third order radial basis functions (RBF) are used, the results 
obtained using the ALBIE were found to be comparable to those of the LBIE. 
Nevertheless, there are concerns that the differentiation of the RBF carried out to 
approximate the spatial gradients can affect the accuracy of the numerical 
scheme, particularly in problems where knowledge of the spatial gradients is of 
significance. This is investigated in the present paper, where the lid driven cavity 
problem is solved. The problem is described by the velocity-vorticity 
formulations of the Navier-Stokes equations, which present an excellent example 
as the accuracy of the numerical scheme depends strongly on how accurate the 
velocity spatial gradients are evaluated. The performance of the ALBIE is 
compared with the radial basis integral equation (RBIE) method; an integral 
equation based meshless method that does not involve the differentiation of the 
RBF to approximate the spatial gradients [3, 4]. 
     This paper is organized into five sections. Section 2 describes the lid driven 
cavity problem and derives briefly the ALBIE. The steps involved in 
implementing the ALBIE to solve the lid driven cavity problem are given in 
Section 3. Numerical results are presented in Section 4 and conclusions are given 
in Section 5. 

2 Mathematical formulations 

2.1 The lid driven cavity problem 

The velocity-vorticity formulation of the Navier-Stokes equations governing the 
two-dimensional incompressible flow is given in non-dimensional form by: 
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where r = (x1,x2) is the field point coordinates inside the domain Ω, ui = (u1,u2) is 
the velocity vector, ω is the vorticity, t is time and Re is the Reynolds number. 
Equations (1a) and (1b) represent the velocity Poisson equation and the vorticity 
transport equation, respectively. 
     Figure 1 illustrates the two-dimensional lid driven cavity problem. The lid is 
represented by the top boundary and moves in the x1-direction at velocity u1 = 1, 
while all other boundaries are stationary walls such that the stationary no slip 
condition can be prescribed. 
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Figure 1: (a) The lid driven cavity problem and (b) the distribution of nodes 
based on the hyperbolic grid stretching. 

2.2 The local boundary integral equation method 

In this section, only a brief derivation of the LBIE is presented. Readers are 
referred to the paper by Ooi and Popov [2] for a more complete derivation of the 
LBIE and the ALBIE. To carry out the LBIE, Nt collocation nodes are distributed 
across Ω∪Γ, where Γ is the boundary of the domain Ω. A circular subdomain 
Ωm enclosed by the local boundary Γm, centred on each node is generated. These 
subdomains may overlap, may be of different radius and may extend beyond the 
boundary of the solution domain. 
     Consider the following equation: 
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where φ and b are represented by u and –∇×ω in (1a), and ω and Re(u∇ω) in 
(1b). The term ∂ φ/∂t vanishes for the velocity Poisson equation. Following the 
introduction of the companion solution [1], the integral equation representation 
of (2) for ξ at the interior of Ω is given by: 
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where ξ = (ξ1, ξ2) is the source point coordinate and Φ*(r;ξ) is the modified test 
function given by: 
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where ℜ is the Euclidean distance between the field point and the source point 
and Rm is the radius of the subdomain Ωm. 
     Equation (3) is used in both the LBIE and the ALBIE when the source point ξ 
is at the interior of Ω. For ξ at the boundary, the ALBIE employs the following 
equation [2]: 
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where Φ(r;ξ) is the fundamental solution of the Laplace equation. 
     The field variables φ, b and ∂φ/∂t in (3) and (5) can be approximated in terms 
of their values at the surrounding nodes by using the RBF interpolations, i.e.: 
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where Na is the number of points used in the interpolation, f is the RBF and α are 
unknown coefficients that can be determined by collocating (5) at all the Na 
points. This sets up a system of linear algebraic equations that can be inverted 
yielding: 
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where W(kn) are the coefficients of the inverse matrix obtained from the RBF 
interpolations and φ(n) and b(n) are values of φ and b at the nth interpolation point. 
The unknown spatial gradients ∂ φ/∂xj in (5) can be expressed in terms of φ(n) by 
differentiating the first expression in (7). This leads to: 
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     As in the RBIE [3, 4], the interpolations in (7) and (8) remain valid for part of 
the subdomain that is exterior to the solution domain. In this case, the unknowns 
are extrapolated by the surrounding nodes. 
     Substituting (6), (7) and (8) into (3) and (5) yields: 
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where  
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     The boundary and domain integrals in (10) can be evaluated numerically 
using formulae such as the Gaussian quadrature.  

2.3 The time stepping scheme 

The time-dependent variables in (9a) and (9b) are dealt with by using the time-
stepping scheme [5]: 
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where ∆t is the time step. Substituting (11) into (9a) and (9b) yields: 
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where the superscripts ‘+’ and ‘–’ indicates values of variables at time levels t + 
∆t/2 and t – ∆t/2, respectively. Note that the approximations in (11) are used 
inside term b in (12a) and (12b) in the case when b contains φ(r,t) and ∂φ(r,t)/∂xj.  

3 Numerical implementation 

3.1 Collocation procedure 

For a numerical procedure, the node ξ is collocated at the Nt nodes. When ξ is at 
the interior, (12a) is used to set up the system of equations. When ξ is at the 
boundary where the Dirichlet condition is prescribed, no equation is enforced 
since the values of the potential variables are known. Since the lid driven cavity 
problem does not involve the Neumann condition (see Figure 1), (12b) is not 
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used to set up the system of equations. Instead, (12b) is used to determine the 
values of the spatial gradients during post-processing.  

3.2 Time-stepping 

If the values of φ - and ∂φ -/∂xj are known at each time step, then (12a) and (12b) 
along with the prescribed initial-boundary conditions give rise to a system of 
linear algebraic equations that can be solved for the unknowns φ + and ∂φ +/∂xj on 
the boundary and interior of the solution domain. If t = ∆t/2, then the values of 
φn(0) and ∂ φ(0)/∂xj are given by the prescribed initial conditions. Unknown 
values φ(∆t) and ∂ φ(∆t)/∂xj on the boundary and interior of the solution domain 
can be obtained by solving the system of linear algebraic equations assembled 
from (12a) and (12b). With φ(∆t) and ∂ φ(∆t)/∂xj known, values of φ(3∆t/2) and 
∂φ(3∆t/2)/∂xj can be calculated. This procedure may be repeated to obtain values 
of the field functions and its gradients at higher time levels until the desired time 
level is reached. 

3.3 Iterative scheme 

An important step when solving the velocity-vorticity formulations of the 
Navier-Stokes equations is the calculations of the boundary vorticity to be used 
as boundary conditions when solving the vorticity transport equation. The 
boundary vorticity can be calculated by using the definition of vorticity: 
 

,
2

1

1

2

x
u

x
u

∂
∂

−
∂
∂

=ω  (13) 

where the gradients of u are obtained from the solutions of the velocity Poisson 
equation. To couple the velocity and the vorticity fields, an iterative procedure 
that solves sequentially for the velocities in the x1- and x2-directions and the 
vorticity is developed. This scheme is similar to that reported in [6] and shall not 
be repeated here. 

4 Numerical results 

All the numerical simulations were carried out using the third order 
polyharmonic spline of the form [2]: 
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     The RBF in (14) is augmented with a third order global polynomial p(r), 
given by: 
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     A total of Na = 25 points were chosen for the RBF interpolations. 
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     The radii of the subdomains at the interior were chosen to be the distance to 
the nearest node, while the radii of the subdomains at the boundary were chosen 
to be 0.1 times the distance to the nearest node. This ensures that errors due to 
the extrapolation of the field variables are minimized. All the boundary and 
domain integrals were evaluated numerically using the Gaussian quadrature with 
20 and 400 (20×20) points, respectively. 
     In the present study, non-uniform nodes distributions were chosen to carry out 
the numerical simulations. Higher density of nodes was placed near the corners 
and the boundaries of the cavity. This is achieved based on the hyperbolic grid 
stretching: 
 

,
)tanh(

))/1(tanh(1 max)(
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ε mmx m

j

−−
=  (16) 

where xj
(m) is the mth node in the j-direction and ε is a constant that controls the 

degree of stretching of the computational grid. In this study, ε was chosen to be 
1.15. Figure 1(b) shows the distribution of a 51 × 51 grid generated using the 
hyperbolic grid stretching method. Three cases of Re were investigated, i.e. Re = 
100, 400 and 1000. A total of Nt = 1681 and 3721 nodes were used to solve the 
flow at Re = 100 and 400, respectively. For the flow at Re = 1000, simulations 
were carried out for Nt = 6561, 10201 and 14641 nodes to examine the accuracy 
of the numerical scheme. All computations were carried out in an Intel Xeon 
3.0GHz workstation with 20GB of RAM. 
     Table 1 shows the minimum velocity in the x1-direction and the maximum 
and minimum velocity in the x2-direction. The numerical results obtained using  
 

Table 1:  Maximum and minimum values of u1 and u2 for flows at Re = 100, 
400 and 1000. 

 min(u1) min(u2) max(u2) 
Re = 100    
   ALBIE (41×41) -0.2232 -0.2536 0.1809 
   RBIE (41×41) -0.2184 -0.2529 0.1884 
   Benchmark* -0.2109 -0.2453 0.1753 
    
Re = 400    
   ALBIE (61×61) -0.3139 -0.4307 0.2916 
   RBIE (61×61) -0.3405 -0.4602 0.3150 
   Benchmark* -0.3273 -0.4499 0.3020 
    
Re = 1000    
   ALBIE (81×81) -0.3195 -0.4547 0.3203 
   ALBIE (101×101) -0.3537 -0.4910 0.3363 
   ALBIE (121×121) -0.3489 -0.4794 0.3380 
   RBIE (121×121) -0.3807 -0.4974 0.3638 
   Benchmark* -0.3829 -0.5155 0.3710 
*Ghia et al. [7] using 129 × 129 grid. 
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the RBIE with the third order RBF (see (14) and (15)) and the benchmark 
solutions of Ghia et al. [7] are also shown for comparisons. It is clear that the 
ALBIE produced results that were comparable and in some cases, more accurate 
than the RBIE for flows at Re = 100 and 400. As Re increased to 1000, the 
solutions of the ALBIE deviated slightly from the benchmark solutions. On the 
other hand, the solutions of the RBIE were considerably more accurate than the 
ALBIE when compared with the benchmark solutions. 
     Figure 2 plots the velocity in the x1- and x2-directions along the geometric 
centre of the cavity, respectively, for flows at Re = 100, 400 and 1000. For Re = 
100 and 400, the numerical results obtained using the ALBIE were comparable 
to that of the RBIE and the benchmark solutions. For Re = 1000, it appears that 
the numerical solutions of the ALBIE were less accurate than the RBIE when 
compared to the benchmark solutions. The lower accuracy is due to the lower 
order RBF used to approximate the spatial gradients. The differentiation of the 
RBF in (8) means that the spatial gradients are approximated using a second 
order interpolation function instead of one that is third order, as in the RBIE. 
     Table 2 summarizes the computational parameters of the ALBIE and the 
RBIE. The pre-processing time refers to the time used to evaluate the boundary 
and domain integrals. One may observe that the ALBIE generates less number of 
equations than the RBIE; the larger number of equations of the RBIE is due to 
the introduction of two additional equations to each node to account for the 
spatial gradients [3, 4]. The larger number of equations naturally led to a longer 
mean CPU time per iteration. In this case, the mean CPU time per iteration of the 
RBIE was more than five times that of the ALBIE. The pre-processing time of 
the ALBIE was approximately twice longer than that needed by the RBIE and 
this was primarily due to the additional evaluations of the integrals H1,j in (10), 
which was not evaluated in the RBIE. 

Table 2:  Computational parameters of the ALBIE and the RBIE. 

 No. of nodes (Nt) 
 1681 3721 6561 
ALBIE     
   No. of equations 1521 3481 6241 
   Pre-processing (s) 12.34 25.88 48.77 
   Mean time per iteration (s) 0.37 0.94 2.03 
    
RBIE    
   No. of equations 4883 10923 19363 
   Pre-processing (s) 5.63 12.78 23.39 
   Mean time per iteration (s) 1.85 5.29 12.38 
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Figure 2: Plots of u1 and u2 along the geometric centre of the cavity for  
(a) Re = 100, (b) Re = 400 and (c) Re = 1000. 

5 Conclusions 

In this paper, the effects of differentiating the RBFs to approximate the spatial 
gradients in the ALBIE have been investigated by solving the lid driven cavity 
problem described by the velocity-vorticity formulation of the Navier-Stokes 
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equations. This example was chosen as the accuracy of the numerical solutions 
depends strongly on how accurate the vorticity is evaluated from the velocity 
spatial gradients (see (13)). 
     While flows at Re = 100 and 400 can be solved accurately with the ALBIE, 
the numerical solutions obtained for the flow at Re = 1000 were still far from 
satisfactory. Given the considerably shorter CPU time, there are clearly some 
advantages of using the ALBIE over the RBIE. To make the ALBIE more 
applicable to a wide range of problems, it is important that its accuracy for 
solving problems with large degrees of nonlinearity is significantly improved.  
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