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ABSTRACT
In this paper, the authors present a deterministic model of transcranial electric stimulation and develop
a Boundary Element Method based algorithm capable of calculating potential and current density in
the investigated domain. Furthermore, the deterministic model is coupled with Stochastic Collocation
Method to evaluate the propagation of the uncertainty of the input parameters to the results. The
uncertainty of the results is analysed via statistical approaches. The governing partial differential
equation of the deterministic model is the Laplace equation. We assume that the studied domain
is composed of subdomains of different materials. The subdomains are homogeneous and isotropic
and have constant electrical conductivity. We introduce the Boundary Element Method for such a
setup, support Dirichlet and Neumann boundary conditions at the outer boundary of the domain, and
assume continuity of the potential and conservation of current density at the boundaries between
the subdomains. We assume that the electrical conductivity of each subdomain is subject to some
uncertainty. By coupling the developed simulation tool with the Stochastic Collocation Method, we
are able to analyse the uncertainty of the resulting electric potential and current density and identify
the contribution to the uncertainty from each subdomain. We apply the developed algorithms to study
the transcranial electric stimulation of a human head. A head model with 9 tissues (white and grey
matter parts of cerebellum, ventricles, cerebellum, cerebrospinal fluid, head, tongue, cerebrum, and
skull) is considered and voltage is applied across two electrodes. The results show that the uncertainty
of electrical conductivity in the skull, cerebrospinal fluid and, grey matter have the largest influence on
the results.
Keywords: boundary element method, stochastic collocation method, sensitivity analysis, transcranial
electric stimulation.

1 INTRODUCTION
The Boundary Element Method (BEM) is a numerical technique aimed at solving partial
differential equations (PDEs). In the case of a homogenous PDE, using its fundamental
solution, we derive a boundary integral equation, which enables us to find the solution by
discretizing only the boundary of the problem domain. The authors consider the modelling
of Transcranial Electric Stimulation (TES) in this paper. Transcranial electrical stimulation
(TES) represents a non-invasive brain stimulation technique used as a treatment in various
brain related disorders, as well as an important tool in stroke recovery and chronic pain [1].
Crucial to the application of TES is the knowledge on the conductivity of biological tissues.
However, mostly due to a different measurement methods and tissue preparation techniques,
but also due to particularly challenging measurement in the low frequency range, there is
a high level of discrepancy between the reported values of tissue properties. These tissue
uncertainties are considered a main concern in computational models of TES since tissue
conductivity values will have a significant impact on the distribution of the induced fields [1].
Therefore, we consider the coupling of deterministic TES model with statistical methods to
take into account this implicit uncertainty. TES, for a homogenous domain, is governed by
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the Laplace equation. When applied to the stimulation of the human head, inhomogeneous
conditions as the electrical conductivity of different tissues varies are encountered. Domain
decomposition (Bui et al. [2]) is considered to handle different conductivities of the different
tissues.

The main goal of this work is to couple the deterministic BEM based simulation tool with
the Stochastic Collocation Method (SCM, Babuska et al. [3]) to estimate the uncertainty of the
numerical predictions. Numerical modelling and simulation are advantageous in many cases
to performing experimental measurements and are thus widely used in almost all engineering
disciplines for design and optimization purposes. The use of a purely deterministic model and
a BEM solution leads to simulation results, but does not contain any information about the
uncertainty of the results. Such an estimation can be obtained by comparing simulation results
with experiments, but these are costly and time consuming. The SCM allows the propagation
of the uncertainty of input parameters (such as tissue conductivity in the case of TES) through
the numerical model to the results (such as electric potential or current in the case of TES).

2 GOVERNING EQUATIONS
To study bioelectromagnetism in living tissues, the authors consider them as volume
conductors [4]. Their resistances, capacitances, and voltage sources are distributed within
a volume, and the inductive component of the impedance is neglected. For low frequencies,
we can neglect capacitive and electromagnetic effects. Thus, currents and voltages can be
considered stationary within this quasi-static approximation.

Let us consider a tissue as a conductor with electrical conductivity σ in which there are
no volumetric current sources. If an electric field ~E is assumed, the net current flow into/out
of the volume must be solenoidal, i.e.

~∇ · ~J = 0, (1)

where ~J is the current density. It is related to the electric field via ~J = σ ~E. In static
conditions, the electric field may be expressed as a negative gradient of the electric potential
ϕ, ~E = −~∇ϕ. With this, we may rewrite eqn (1) as

~∇ ·
(
−σ~∇ϕ

)
= 0. (2)

In general, the electrical conductivity for an anisotropic conductor is a tensor. For example, in
the white matter of the brain, the electrical conductivity is higher in the direction of the nerve
fiber tracts. In this work, we model the tissues in the human head as a group of subdomains,
each representing individual tissues with different but homogeneous and isotropic electrical
conductivity. In this case, the eqn (2) for each subdomain simplifies to a Laplace equation

∇2ϕ = 0, (3)

where changes of electric conductivity between tissues are taken into account through
boundary conditions. At the outer boundary of the computational domain we prescribe either
Dirichlet boundary condition (known electric potential ϕ) or Neumann boundary conditions
(known projection of electric current density to normal direction J = −σ~n · ~∇ϕ). Here, ~n is
the outward pointing unit normal at the boundary. At the boundaries between subdomains
continuity of potential (ϕI = ϕII ) and conservation of current density (JI = −JII) is
prescribed.
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3 NUMERICAL ALGORITHM

3.1 The boundary element method for TES

A three-dimensional domain Ω ∈ R3 with a boundary Γ = ∂Ω and a location vector ~r is
considered. The domain is locally homogeneous, so different sub-regions have different, but
constant material properties. The authors employ the domain-decomposition approach and
divide the domain into subdomains Ω = ∪Ωi, where each subdomain has its own boundary
Γi = ∂Ωi. Inside each subdomain we can write a boundary integral representation of the
Laplace eqn (3) as [5]

c(~ξ)ϕ(~ξ) +
∫

Γi

ϕ(~r)~∇ϕ? · ~ndΓi =
∫

Γi

ϕ?(~n · ~∇ϕ(~r))dΓi ~ξ ∈ Γi, (4)

where Γi is the boundary of ith subdomain, ~ξ is the source point, c is the free coefficient, and
ϕ? = 1/4π|~r − ~ξ| is the fundamental solution of the Laplace operator. Such a representation
allows us to solve only for the unknowns at the boundary of the subdomain, since the solution
in the interior depends only on the knowledge of boundary variables (potential ϕ(~r) and flux
q = ~n · ~∇ϕ(~r)).

To obtain a system of linear equations for the unknowns at the boundary, we discretize
subdomain boundaries with triangular elements. Within the triangles we use a linear
interpolation of the potential ϕ(~r) =

∑
Φjϕ(~r)j and a constant interpolation of the flux. The

collocation point is placed into each interpolation vertex (the three corners and the barycentre
of each boundary element). The two integrals in eqn (4) are evaluated and stored into matrices
[Hi] and [Gi]. Each row of the matrix corresponds to a collocation point and each column to
a node in the computational mesh. The matrix entries are

[H(jk)
i ] =

∫
Γ

(k)
i

Φk ~∇ϕ?j · ~n dΓ, [G(jk)
i ] =

∫
Γ

(k)
i

ϕ?jdΓ. (5)

where i denotes the subdomain, Γ(k)
i is the boundary element, j the collocation point and

k the column index corresponding to the node index of the chosen boundary element and
interpolation shape function. Contribution to a node k from different adjacent boundary
elements, which share the node k are summed up and stored in a single matrix entry. Using the
matrices of integrals we obtain the following system of linear equations for each subdomain

ciϕi + [Hi]{ϕ} = [Gi]{q}, (6)

where {ϕ} and {q} are vectors of nodal values of potential and flux. The computation of the
free coefficient c(~ξ) and the strongly singular diagonal element of [Hi] is done indirectly.
Setting ϕ = 1, q = 0 as one of the valid solutions of the original problem, we can use eqn
(6) to evaluate the sum of c and the diagonal element in the [Hi] matrix if all other elements
were previously evaluated by numerical integration.

Integrals in eqn (5) are performed numerically over triangles in 3D space. For the purpose
of linear interpolation within each triangle it is convenient to use barycentric coordinate
system (λ1, λ2, λ3). A position within a triangle is then calculated by ~r = λ1~r1 + λ2~r2 +
λ3~r3. Weights and integration point locations were taken out of [6] and converted to the
barycentric coordinate system. Lists of (wi, λ1,i, λ2,i, λ3,i) with 7, 25, 54, 85 and 126 entries
were obtained, which provide machine precision accurate integration of polynomials of
degree 5, 10, 15, 20 and 25 respectively. With this, integral over a triangular boundary element
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τ can be approximated by∫
τ

f(~r)dΓ ≈
∑
i

wif(λ1,i~r1 + λ2,i~r2 + λ3,i~r3). (7)

When applying the boundary element method singular integrals must be computed. The
singularity is located at one of the vertices of the triangle (in linear interpolation methods)
or at the centre of the triangle (in constant interpolation methods). To accurately compute
such integrals, we recursively subdivide the triangle in the direction of the singular point.
Fig. 1 demonstrates the recursive algorithm. At each step, the triangle is subdivided into four
smaller triangles obtained by bisecting the sides of the triangle. The one small triangle that
still contains the singularity is subdivided again in the next step. The number of parts into
which the triangle is divided is 1 + 3n, where n is the number of recursive steps. The final
result is a sum of integrals calculated over all the parts. The number of recursive steps controls
the accuracy and can be adjusted to match the accuracy of computing non-singular integrals.

singular point

~r3

~r2

~r1

0

~r

1
2(~r2 + ~r3)

Figure 1: Recursive subdivision of a triangle element towards the singular point.

Having set up the systems of linear equations (eqn (6)) for each subdomain, let us examine
them and discuss the boundary conditions. The number of equations (rows in matrices) in
these systems is equal to the number of all nodes in the mesh. This includes all vertices of all
triangles and all barycenters. For each boundary element located at the outer boundary, either
the potential (at the triangle vertices) or the flux (at the barycenter) is known. At parts of the
boundary, which are adjacent to neighboring subdomains, the potential and flux are unknown.
Such a system is underdetermined and cannot be solved alone. To mitigate this, continuity
of potential and conservation of current density at the boundaries between subdomains is
assumed. This gives us an overdetermined system of linear equations (since the nodes are
shared between subdomains). The resulting overdetermined linear system of equations is
solved for the unknown potential and flux at outer and inner boundary using a least squares
based solver (Paige and Saunders [7]). An alternative approach was proposed by Loeffler and
Mansur [8], who use a domain superposition instead of a domain decomposition. After the
solution at the boundaries has been found, it is possible to acquire the value of potential at any
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point in the domain explicitly by using eqn (4) and setting the source point ~ξ at the desired
location.

3.2 Numerical code verification

To verify the numerical algorithm consider a 1D potential distribution problem within three
joined subdomains. The domain is a long cylinder of diameter 1 m and length 3 m, as shown
in Fig. 2. The prescribed potential is at the top and bottom of the cylinder is ϕ0 = 1 V,
ϕ3 = 4 V and the conductivities are σ1 = 2 S/m, σ2 = 3 S/m, σ3 = 4 S/m. There is no
current at the cylinder wall, so the problem is one-dimensional. The analytical solution for
the potential between the subdomains is ϕ1 = 34/13 V, ϕ2 = 66/39 V and for the current
density is J = 36/13 A/m2. Several discretizations of the domain were prepared and the
results were compared with analytical values. Relative error is used to present the results
in Fig. 3. We observe the developed algorithm is second order accurate for current density
and even better for potential. At accuracy below 10−6 convergence stops due to the finite
accuracy of numerical integration. In absolute sense the accuracy of potential is better than
the accuracy of current density due to the fact we use linear interpolation of potential over
boundary elements and only constant interpolation of current density within the boundary
elements.

ϕ3

ϕ2

σ1

q = ~n · ~∇ϕ = 0

ϕ1

ϕ0

σ2
σ3

J

Figure 2: Potential distribution in the case of one-dimensional electrostatics problem with
three subdomains. Constant potential ϕ0 and ϕ3 are prescribed at the top and
bottom ends of the cylinder, whereas zero flux is assumed at the cylinder surface.

4 STOCHASTIC COLLOCATION METHOD
We consider the conductivity of the tissues in head model to be random variables uniformly
distributed in a range σ ∈ (σmin, σmax). The size of this interval is due to changes between
individuals, which was encountered when measuring samples of brain tissue from different
donors. We assume uniform distribution, so probability distribution function (PDF) of all
random variables is non-zero only in this range: (σmin, σmax):

p(σ) =
{

1
σmax−σmin

σ ∈ (σmin, σmax).
0 elsewhere

(8)

Let the number of random variables (different tissue conductivities in our model) be n.
Additionally let our deterministic model, which solves for the potential in the head and
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Figure 3: Relative error in potential and current density calculated as the difference between
analytical and numerical solution at interfaces between subdomain. The green
line shows the second order convergence slope. Average mesh element size is
calculated as a square root of average mesh element area.

depends on the conductivities, be denoted by y(σ1, . . . , σn). In this case, statistics for our
deterministic model such as expected value µy and variance vary may be calculated using [9]:

Yi =
∫ ∞
−∞

. . .

∫ ∞
−∞

[y(σ1, . . . , σn)]i p(σ1) . . . p(σn)dσ1 . . . dσn, (9)

µy = Y1, vary = Y2 − µ2
y. (10)

Evaluating the integral (9) using a standard approach such as Gauss–Lengendre quadrature
is possible, however it is very CPU intensive, as the number of evaluations of the model y
scales as Nn, where N is the number of quadrature sample points. To avoid this, we use the
Smolyak [10]– [12] sparse grid approach to numerically evaluate the integral (9). The integral
is approximated by

Yi ≈
1
2n

Ns∑
i=1

[
y
(
ξ

(1)
i , ξ

(2)
i , . . . , ξ

(n)
i

)]i
wi, (11)

where ξ
(t)
i = σt,min + (σt,max − σt,min)ηi+1

2 and ηi and wi are sparse grid points and
weights and the 1

2n factor comes as a results of change of variables. For large n the number
of sparse grid points in eqn (11) and with this the number of evaluations of the deterministic
model is much smaller than the number of points needed by standard approaches, such as
the Gauss–Lengendre quadrature, i.e. Ns � Nn. To calculate the points and weights for the
sparse grid we employed the Tasmanian library [13], [14] using Clenshaw Curtis fully nested
points.

5 RESULTS
We apply the developed method to a human head model with nine tissues. The model and the
considered tissues are shown in Fig. 4. Since the ventricles are filled with cerebrospinal fluid,
we consider the conductivity of these two subregions as one parameter. The indeterminacy
of the conductivity in the jaw was neglected because it has several orders of magnitude less

150  Boundary Elements and other Mesh Reduction Methods XLIV

 
 www.witpress.com, ISSN 1743-3533 (on-line) 
WIT Transactions on Engineering Sciences, Vol 131, © 2021 WIT Press



influence on the results compared to the other conductivities. Thus, a total of 7 conductivities
are considered as random variables: Cerebellum, CSF, grey matter, head, tongue, cerebrum
and skull. The potential at the electrodes was set to ±1 V. Zero current boundary condition
was used at the outer surface of the head.

Figure 4: The nine tissue head model, with subdomains representing ventricles, white matter
parts of cerebrum and cerebellum, grey matter, cerebrospinal fluid, skull, jaw and
tongue. All tissues are enclosed into a domain named head, which represents all
other tissues in the human head. Conductivity values are obtained from the tissue
properties database [15]. Ventricles are filled with cerebrospinal fluid, thus the
conductivity of these two subdomains is treated as one parameter.
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Figure 5: Comparison of potential at left-to-right profile through the head model. Left:
Difference in potential due to computational grid density in BEM. Right:
Difference in potential variance due to difference in the number of collocation
points in SCM. Only small differences between meshes and the number of
collocation points are observed.

Different computational grids were constructed with 38,000 to 87,000 degrees of 
freedom. Only small differences in the results were observed (Fig. 5) so in the interest of 
saving computational time, we chose the grid with 45,000 degrees of freedom for the 
analysis. Furthermore, we used SCM with 3, 5, 7 and 9 collocation points to make sure, that 
the numerical calculation of the integral (9) converges. Comparison in potential variance is
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shown in Fig. 5 and reveals good agreement between results and proves that the numerical
calculation of the integral converged. Finally, we chose Smolyak sparse grid approach with
589 simulations to be performed. The total CPU time on a single processor used was about 5
hours per simulation, in total 123 days.

In Fig. 6 we plot the variance of the scalar electric potential [V2] at the surfaces of
the different tissues in the head. Overall, the largest variance ≈ 10−3 V2 is observed in the
white matter, grey matter, CFS, skull and head. It makes sense for the CSF to have the large
variance due to high conductivity. It is considered a so called “super highway” for current
flow, according to Bikson et al. [16]. The greatest variance is observed in the area under the
electrodes. This analysis provides information about the uncertainty of the applied electric
field to different tissues due to the unknown structure and properties of the tissues.
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Figure 6: Variance of scalar electric potential [V2] shown at surfaces of different tissues in
the head.
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Figure 6: Continued.
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Figure 6: Continued.

6 CONCLUSIONS
In this paper, we introduce the Boundary Element Method to simulate the Transcranial
Electric Stimulation and couple it with the Stochastic Collocation Method. BEM is a
deterministic solver and the SCM wraps it to evaluate the uncertainty quantification of the
output of interest. A domain decomposition technique is proposed to deal with changes in
material properties in different regions of the model. The domain decomposition technique
employed leads to a solution of an overdetermined system of linear equations. The SCM
was implemented using a sparse numerical integration scheme, which greatly reduces the
number of required deterministic simulations and makes such analyses possible for complex
geometries.

The developed method is used to study the TES of a human head model with 9 tissues.
The tissues are assumed to be homogeneous and isotropic with constant conductivities. The
conductivities of the tissues are considered as random variables uniformly distributed in
ranges obtained from the available literature. The expected value and variance values of the
electrical scalar potential in the head tissues are calculated. This analysis reveals areas in the
human head where the uncertainty of the applied electrical potential is greatest during the
TES procedure. We show that the areas directly under the electrodes have the largest variance
of the potential. Large variance is observed in white matter, grey matter, cerebrospinal fluid,
skull and head.
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