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ABSTRACT 
In this paper, the plate bending curvature was included in the geometrical non-linearity (GNL) effect 
beyond the deflection derivatives to perform plate buckling analyses. The boundary element method 
(BEM) was adopted and the formulation employed two integrals related to the GNL effect, with one 
computed on the boundary and the other on the domain. The eigenvalue problem was solved with the 
inverse iteration method. Results obtained with different boundary conditions were compared to values 
in the literature. 
Keywords: plate buckling, Mindlin plate, Reissner plate, bucking parameter, tangential differential 
operator. 

1  INTRODUCTION 
In-plane forces affect the plate bending behavior when the deflection surface is considered 
in the plate equilibrium. The problem is geometrically nonlinear in the case of large 
deflections, when the stretching and the bending of the plate become coupled [1]. Buckling 
analysis is one of the ways to evaluate the effect of in-plane forces when deflections remain 
small and the in-plane forces can be related to in-plane tractions. Timoshenko and 
Woinowsky-Krieger [1] presented the equilibrium equation for the classical bending model 
with the geometric non-linearity (GNL) effect containing the derivatives of the plate 
deflection weighted by in-plane forces, which is used in buckling analyses. The inclusion of 
the effect of the shear deformation in the bending model improves the accuracy of the plate 
stresses computation [2] or the dynamical behavior of the plate [3]. The buckling load values 
present significant changes according to plate thickness values beyond the flexural rigidity 
when the effect of shear deformation is included in the bending model [4], with reference to 
results obtained with the classical model even considering the same GNL effect presented by 
Timoshenko in both models. Questions arise on the effect of shear deformation in the GNL 
when buckling analyses for moderately thick plates are performed. Dawe and Roufaeil [5] 
discussed the plate buckling analyses considering the effect of shear deformation following 
the first study presented by Herrmann and Armenakas [6]. The inclusion of the curvatures 
(the first derivative of rotations) beyond the deflection derivatives in the GNL effect was the 
main point in the discussion. Sun [7] presented a detailed and comprehensive study using the 
equations of motion for the Timoshenko beam with the curvature included in the GNL effect 
beyond the deflection derivative. Sun considered the Trefftz and the Biot theory in the 
analyses and showed the buckling loads were reduced in the range of intermediate 
wavelengths, i.e., when the shear deformation is pronounced. Brunelle and Robertson [8] 
presented two ways to obtain the differential equations for Mindlin plates under a general 
state of non-uniform initial stress considering the curvatures and the deflection derivatives in 
the GNL effect. Mizusawa [9] showed the effect of curvatures was greater for certain types 
of boundary conditions, whereas it was not significant for others when the derivatives of 
deflection would be enough for the analyses. Smith [10] proposed a finite element 
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formulation including both derivatives on displacements (deflection and rotations) in the 
buckling of thick plates. Doong [11] and Matsunaga [12] studied improvements to the model 
representing the effect of shear deformation in plate bending, where the buckling analyses 
considered the derivatives of rotations and deflections combined with a high-order theory 
representing the effect of shear deformation. 

The boundary element formulation for buckling analyses derived in this study employs 
two integrals containing the GNL effect, with one computed on the domain and the other 
computed on the boundary. The first derivatives of the deflection and rotations were used in 
the kernels of integrals related to the GNL effect, and no relation was required for the 
derivatives of in-plane forces. The natural conditions of the buckling problem were 
considered and related to boundary integrals containing the GNL effect in case of free edges 
or when the deflection and/or rotations were released for certain types of boundary 
conditions, i.e., the hard or the soft condition. The present formulation contains the general 
GNL effect with reference to that presented in [4], where only the first derivatives of the 
deflection were considered. The numerical implementation employed quadratic shape 
functions to approximate displacements (deflections and rotations), distributed shears, and 
moments in the boundary elements whereas constant elements were used to discretize both 
integrals related to the GNL effect. Constant elements were the lower type of element to 
evaluate the behavior of the formulation containing the GNL effect. An algebraic 
manipulation using both integrals with the GNL effect was carried out to perform integrations 
only on the sides of cells inside the domain in problems with known displacements 
(deflection and rotations) on the plate boundary. The inverse iteration and Rayleigh quotient 
were used to compute the lowest eigenvalues with the corresponding eigenvectors. The 
changes in the value of the buckling parameter according to the plate thickness were 
compared to values available in the literature. 

2  BOUNDARY INTEGRAL EQUATIONS 
The constitutive equations are written next with a unified notation for the Reissner and 
Mindlin bending models. The Latin indices take on values {1, 2 and 3} and Greek indices 
take on values {1, 2}. 
 

                           𝑀ఈఉ ൌ 𝐷
ሺଵିఔሻ

ଶ
ቀ𝑢ఈ,ఉ ൅ 𝑢ఉ,ఈ ൅

ଶఔ

ଵିఔ
𝑢ఊ,ఊ𝛿ఈఉቁ ൅ 𝛿ఈఉ𝑞𝑅𝐸,  (1) 

 

𝑄ఈ ൌ 𝐷
ሺ1 െ 𝜈ሻ

2
𝜆ଶ൫𝑢ఈ ൅ 𝑢ଷ,ఈ൯, (2) 

 
with 
 

𝐷 ൌ
ா௛య

ଵଶሺଵିఔమሻ
𝜆ଶ ൌ 12

఑మ

௛మ ; 𝑅𝐸 ൌ
ఔ

ఒమሺଵିఔሻ
, 

 
where u is the plate rotation in direction α, and u3 is the plate deflection, D is the flexural 
rigidity, h is the plate thickness,  is Poisson’s ratio, q is the distributed load on the plate 
domain and δαβ is the Kronecker delta. The product qRE in eqn (1) corresponds to the linearly 
weighted average effect of the normal stress component in the thickness direction, which 
should be considered in the Reissner model [2] but not in the Mindlin model [3] (RE = 0). 
This term is null in buckling problems because the distributed load q is equal to zero. The 
shear parameter is equal to 5/6 and 2/12 for the Reissner and the Mindlin model, 
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respectively, and it is the only difference introduced according to the model employed in the 
analysis. 

The natural conditions and the equilibrium equations for the problem can be obtained 
with the calculus of variations [13], [14]. The energy functional of the plate is given by: 
 

Π ൌ න ቊ
𝐷ሺ1 െ 𝜈ሻ

4
൤𝑢ఈ,ఉ

ଶ ൅ 𝑢ఈ,ఉ𝑢ఉ,ఈ ൅
2𝜈

ሺ1 െ 𝜈ሻ
𝑢ఊ,ఊ

ଶ ൅ 𝜆ଶ൫𝑢ఈ ൅ 𝑢ଷ,ఈ൯
ଶ

൨ቋ
ஐ

𝑑Ω ൅ ⋯ 

൅ න
ℎଶ

24
൫𝑁ఈఉ𝑢ఊ,ఈ𝑢ఊ,ఉ൯𝑑Ω

ஐ

൅ න
1
2

൫𝑁ఈఉ𝑢ଷ,ఈ𝑢ଷ,ఉ൯𝑑Ω
ஐ

െ නሺ𝑃𝑤 ൅ 𝐸𝑀ఈ𝑢ఈሻ𝑑Γ.
୻೑

 (3) 

 
The energy functional of the plate was written in the complete form without the 

distributed load in eqn (3). The first integral (domain integral) is the strain energy whereas 
the GNL effect appeared in subsequent integrals containing the in-plane forces (Nαβ). The 
last integral is the potential energy of the external loads. EM1 and EM2 are couples in 
directions 1, 2 and P is the out-of-plane load distributed on a portion of the boundary (f). 
The displacements (u1, u2 and u3) are not prescribed on the portion of the boundary line f. 
The energy functional of the plate can be written as a general function to be minimized with 
the calculus of variations: 
 

Π ൌ න 𝐹൫𝑢ଵ, 𝑢ଶ, 𝑢ଷ, 𝑢ଵ,ଵ, 𝑢ଶ,ଵ, 𝑢ଷ,ଵ, 𝑢ଵ,ଶ, 𝑢ଶ,ଶ, 𝑢ଷ,ଶ൯𝑑Ω.
ஐ

 (4) 

 
The Euler equations obtained from the minimization of eqn (4) are given by: 

 
డி

డ௨೔
െ

డ

డ௫ഀ
൬

డி

డ௨೔,ഀ
൰ ൌ 0 ሺ௜ୀଵ,ଶ,ଷሻ. 

 
The equilibrium equations are obtained when the constitutive equations are introduced in 

the resultant expressions from the application of Euler equations: 
 

                                        𝑀ఊఉ,ఉ െ 𝑄ఊ ൅
௛మ

ଵଶ

డ

డ௫ഀ
൬𝑁ఈఉ

డ௨ം

డ௫ഁ
൰ ൌ 0, (5) 

 

𝑄ఈ,ఈ ൅
డ

డ௫ഀ
൬𝑁ఈఉ

డ௨య

డ௫ഁ
൰ ൌ 0. (6) 

 
The natural conditions introduce the requirements on the boundary portion (f) with not 

prescribed displacements where the variations on displacements are not null (ui ≠ 0): 
 

൬
డி

డ௨೔,ഀ
𝑛ఈ൰ 𝛿𝑢௜ ൌ 0

௬௜௘௟ௗ௦
ሱ⎯⎯ሮ

డி

డ௨೔,ഀ
𝑛ఈ ൌ 0, 

𝑡ఊ ൌ 𝐸𝑀ఊ െ
ℎଶ

12
൫𝑛ఈ𝑁ఈఉ𝑢ఊ,ఉ൯, (7) 

 
𝑡ଷ ൌ 𝑃 െ 𝑛ఈ𝑁ఈఉ𝑢ଷ,ఉ. (8) 

Boundary Elements and other Mesh Reduction Methods XLIV  97

 
 www.witpress.com, ISSN 1743-3533 (on-line) 
WIT Transactions on Engineering Sciences, Vol 131, © 2021 WIT Press



The constitutive equations were used to obtain tα (tα = M.n) and t3 (t3 = Q.n), respectively, 
in the natural conditions. 

The general form of the displacement boundary integral equations (DBIEs) with an 
additional domain integral containing the GNL effect is written next with the notation 
proposed by Weeën: 
 

1
2

𝐶௜௝ሺ𝑥′ሻ𝑢௝ሺ𝑥′ሻ ൅ නൣ𝑇௜௝ሺ𝑥ᇱ, 𝑥ሻ𝑢௝ሺ𝑥ሻ െ 𝑈௜௝ሺ𝑥ᇱ, 𝑥ሻ𝑡௝ሺ𝑥ሻ൧𝑑Γሺ𝑥ሻ
୻

ൌ ⋯ 

ൌ ඵ ቊ𝑈௜ଷሺ𝑥ᇱ, 𝑋ሻ ቈ
𝜕

𝜕𝑋ఈ
ቆ𝑁ఈఉ

𝜕𝑢ଷ

𝜕𝑋ఉ
ቇ቉ ൅ 𝑈௜ఊሺ𝑥ᇱ, 𝑋ሻ

ℎଶ

12
ቈ

𝜕
𝜕𝑋ఈ

ቆ𝑁ఈఉ
𝜕𝑢ఊ

𝜕𝑋ఉ
ቇ቉ቋ 𝑑Ωሺ𝑋ሻ

ஐ

. (9) 

 
in which Cij is an element of the matrix C related to the boundary at the source point, which 
becomes the identity matrix when a smooth boundary is considered, Uij represents the 
rotation (j = 1, 2) or the deflection (j = 3) due to a unit couple (i = 1, 2) or a unit point force 
(i = 3), respectively, Tij represents the moment (j = 1, 2) or the shear (j = 3) due to a unit 
couple (i = 1, 2) or a unit point force (i = 3), respectively. 

It is well known in nonlinear analyses of beams or plates [1], [15] that the natural 
condition is introduced for each generalized force ti corresponding to the displacement not 
prescribed. According to eqns (7) and (8), the GNL effect should be introduced when the 
deflection and/or rotations is/are not prescribed on the boundary portion. 

The term related to the GNL effect in eqns (5), (6) or (9) can be simplified with the 
equilibrium equations for in-plane forces (Nαβ,α = 0). The second derivatives of the 
displacements (rotations or deflections) result from the simplification, as shown in several 
studies in the literature. The equilibrium equations for in-plane forces were not used here as 
done in [4] but an algebraic manipulation with the divergence theorem was done in the 
domain integral related to GNL effect in eqn (9), i.e.: 
 

ඵ ቊ𝑈௜ଷሺ𝑥ᇱ, 𝑋ሻ ቈ
𝜕

𝜕𝑋ఈ
ቆ𝑁ఈఉ

𝜕𝑢ଷ

𝜕𝑋ఉ
ቇ቉ ൅ 𝑈௜ఊሺ𝑥ᇱ, 𝑋ሻ

ℎଶ

12
ቈ

𝜕
𝜕𝑋ఈ

ቆ𝑁ఈఉ
𝜕𝑢ఊ

𝜕𝑋ఉ
ቇ቉ቋ

ஐ

𝑑Ωሺ𝑋ሻ ൌ ⋯ 

න ቈ𝑈௜ଷሺ𝑥ᇱ, 𝑥ሻ𝑛ఈሺ𝑥ሻ𝑁ఈఉሺ𝑥ሻ𝑢ଷ,ఉሺ𝑥ሻ ൅
ℎଶ

12
𝑈௜ఊሺ𝑥ᇱ, 𝑥ሻ𝑛ఈሺ𝑥ሻ𝑁ఈఉሺ𝑥ሻ𝑢ఊ,ఉሺ𝑥ሻ቉ 𝑑Γሺ𝑥ሻ

୻

൅ ⋯ 

െ ඵ ቈ𝑈௜ଷ,ఈሺ𝑥ᇱ, 𝑋ሻ𝑁ఈఉሺ𝑋ሻ𝑢ଷ,ఉሺ𝑋ሻ ൅
ℎଶ

12
𝑈௜ఊ,ఈሺ𝑥ᇱ, 𝑋ሻ𝑁ఈఉሺ𝑋ሻ𝑢ఊ,ఉሺ𝑋ሻ቉

ஐ

𝑑Ωሺ𝑋ሻ. 

 
Two integrals containing the GNL effect result from the algebraic manipulation with the 

divergence theorem, where one is computed on the boundary and the other on the domain. 
Despite the increase in the number of integrals with the GNL effect, the first derivatives of 
the deflection and rotations were only necessary in two integrals and the equilibrium 
equations for in-plane forces were not required. The final DBIE is given by: 
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1
2

𝐶௜௝ሺ𝑥′ሻ𝑢௝ሺ𝑥′ሻ ൅ නൣ𝑇௜௝ሺ𝑥ᇱ, 𝑥ሻ𝑢௝ሺ𝑥ሻ െ 𝑈௜௝ሺ𝑥ᇱ, 𝑥ሻ𝑡௝ሺ𝑥ሻ൧𝑑Γሺ𝑥ሻ
୻

ൌ ⋯ 

ൌ න ቈ𝑈௜ଷሺ𝑥ᇱ, 𝑥ሻ𝑛ఈሺ𝑥ሻ𝑁ఈఉሺ𝑥ሻ𝑢ଷ,ఉሺ𝑥ሻ ൅
ℎଶ

12
𝑈௜ఊሺ𝑥ᇱ, 𝑥ሻ𝑛ఈሺ𝑥ሻ𝑁ఈఉሺ𝑥ሻ𝑢ఊ,ఉሺ𝑥ሻ቉ 𝑑Γሺ𝑥ሻ

୻

൅ ⋯ 

െ ඵ ቈ𝑈௜ଷ,ఈሺ𝑥ᇱ, 𝑋ሻ𝑁ఈఉሺ𝑋ሻ𝑢ଷ,ఉሺ𝑋ሻ ൅
ℎଶ

12
𝑈௜ఊ,ఈሺ𝑥ᇱ, 𝑋ሻ𝑁ఈఉሺ𝑋ሻ𝑢ఊ,ఉሺ𝑋ሻ቉

ஐ

𝑑Ωሺ𝑋ሻ. (10) 

 
The boundary integral containing the GNL effect can be related to natural conditions 

given by eqns (7) and (8) when the boundary portion has the deflection and rotations not 
prescribed. This can be shown by assuming the boundary  split into two portions: p and f 

where displacements are known (prescribed) and unknown (not prescribed or free), 
respectively. 
 

1
2

𝐶௜௝ 𝑢௝ ൅ න 𝑇௜௝ 𝑢௝ 𝑑Γ
୻೑

െ න 𝑈௜௝ 𝑡௝ 𝑑Γ
୻೛

ൌ න 𝑈௜ఈ 𝐸𝑀ఈ 𝑑Γ
୻೑

൅ න 𝑈௜ଷ 𝑃 𝑑Γ
୻೑

൅ ⋯ 

െ න 𝑇௜௝ 𝑢௝ 𝑑Γ
୻೛

െ ඵ ቈ 𝑈௜ଷ,ఈ 𝑁ఈఉ 𝑢ଷ,ఉ ൅
ℎଶ

12
 𝑈௜ఊ,ఈ 𝑁ఈఉ 𝑢ఊ,ఉ቉

ஐ

𝑑Ω ൅ ⋯ 

൅ න ቈ𝑈௜ଷ 𝑛ఈ 𝑁ఈఉ 𝑢ଷ,ఉ ൅
ℎଶ

12
𝑈௜ఊ 𝑛ఈ 𝑁ఈఉ 𝑢ఊ,ఉ቉ 𝑑Γ

୻೛

. (11) 

 
The left-hand side of eqn (11) contains the unknowns, i.e., displacements on f and forces 

on p. The loads on the boundary portion f were introduced in the right hand side according 
to natural conditions shown in eqns (7) and (8). A simplification can be done on the boundary 
portion f due to opposite signals of the natural condition and the boundary integral with the 
GNL effect, which only needs to be computed on the boundary portion with prescribed 
displacements (p) as the result. 

The gradient of displacements is required in the DBIE for the buckling problem (eqn 10) 
to introduce the GNL effect. The BIE for the gradient of displacements at an internal point is 
obtained by differentiating the eqn (10) with respect to the coordinates of the source point 
(X'). The result is next written in terms of differentiation of the field point coordinates and 
using the tangential differential operator [16]. 
 

𝑢௜,ఊሺ𝑋′ሻ ൌ න൛𝑀௜ఈఉሺ𝑋ᇱ, 𝑥ሻ𝐷ఊఈൣ𝑢ఉሺ𝑥ሻ൧ ൅ 𝑛ఊሺ𝑥ሻ𝑄௜ఉሺ𝑋ᇱ, 𝑥ሻ𝑢ఉሺ𝑥ሻൟ𝑑Γሺ𝑥ሻ
୻

൅ ⋯ 

൅ න൛𝑄௜ఉሺ𝑋ᇱ, 𝑥ሻ𝐷ఊఉሾ𝑢ଷሺ𝑥ሻሿ െ 𝑈௜௝,ఊሺ𝑋ᇱ, 𝑥ሻ𝑡௝ሺ𝑥ሻൟ𝑑Γሺ𝑥ሻ
୻

൅ ⋯ 
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൅ න ቈ𝑈௜ଷ,ఊሺ𝑥ᇱ, 𝑥ሻ𝑛ఈሺ𝑥ሻ𝑁ఈఉሺ𝑥ሻ𝑢ଷ,ఉሺ𝑥ሻ ൅
ℎଶ

12
𝑈௜ఘ,ఊሺ𝑥ᇱ, 𝑥ሻ𝑛ఈሺ𝑥ሻ𝑁ఈఉሺ𝑥ሻ𝑢ఘ,ఉሺ𝑥ሻ቉ 𝑑Γሺ𝑥ሻ

୻

൅ ⋯ 

െ ඵ ቈ𝑈௜ଷ,ఈఊሺ𝑥ᇱ, 𝑋ሻ𝑁ఈఉሺ𝑋ሻ𝑢ଷ,ఉሺ𝑋ሻ ൅
ℎଶ

12
𝑈௜ఘ,ఈఊሺ𝑥ᇱ, 𝑋ሻ𝑁ఈఉሺ𝑋ሻ𝑢ఘ,ఉሺ𝑋ሻ቉

ஐ

𝑑Ωሺ𝑋ሻ, (12) 

 
with 
 

𝐷ఈఉሾ𝑓ሺ𝑥ሻሿ ൌ 𝑛ఈሺ𝑥ሻ𝑓,ఉሺ𝑥ሻ െ 𝑛ఉሺ𝑥ሻ𝑓,ఈሺ𝑥ሻ. 
 

3  THE NUMERICAL IMPLEMENTATION 
In the formulation described in this paper, quadratic shape functions for isoparametric 
boundary elements were employed with collocation points always placed on the boundary. 
The same mapping function was used for conformal and non-conformal interpolations, i.e., 
nodes at ends of quadratic elements remain at ends when discontinuous elements were 
employed. The collocation points were placed at nodes in case of continuous elements and at 
positions (–0.67, 0.0, +0.67), in the range (–1, 1), in case of discontinuous elements, i.e., the 
collocation points were shifted inside the element at the corresponding end where the 
discontinuity exists. Singularity subtraction [17] and the transformation of variable technique 
[18] were employed for the Cauchy and the weak type of singularity, respectively, when 
integrations were performed on elements containing the collocation points. The standard 
Gauss-Legendre scheme was employed for integrations on elements (or side of the cell) not 
containing the collocation points. Rectangular cells were used to discretize the domain 
integral related to the GNL effect. The derivatives of the displacements (deflection and 
rotation) at the center of the cell were assumed constant on the cell. This assumption allowed 
the use of the divergence theorem to convert the domain integral into equivalent boundary 
integrals performed on sides of the cell. This strategy led to a simplification on the use of 
integrals containing the GNL effect because they have opposite signals as done in [4]. The 
GNL effect was computed from integrations performed on sides of cells inside the domain in 
all problems. The boundary condition is required to include the integrals with the GNL effect 
computed on sides of the cell on the plate boundary: 

1. When the displacements are prescribed on the whole boundary (like a clamped plate on 
all sides), the GNL effect was not computed from integrations performed on sides of 
cells on the plate boundary. 

2. When the displacements are not prescribed on the boundary portion of the plate (f), the 
GNL effect was computed from integrations performed on sides of cells on the boundary 
portion f. 

3. In the case of a hard or soft boundary condition, when the deflection is prescribed and 
the tangential rotation or both rotations is/are not prescribed, the corresponding GNL 
effect related to curvatures is/are computed on the boundary portion related to the hard 
or soft condition. 

The basic inverse iteration and the Rayleigh quotient were used to perform the eigenvalue 
analysis [19], i.e.: 
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The basic inverse iteration procedure is very efficient to compute the lower eigenvalues 

with corresponding eigenvectors [19]. The discretized forms of eqns (10) and (12) were used 
instead of eqn (13) as done in [4]. Starting with an eigenvector x1 with elements equal to 1.0, 
the values of the displacements and tractions at the boundary nodes are found with eqn (10); 
these values are introduced in eqn (12) to obtain the gradient of the displacements (elements 
of the eigenvector x2), and the lowest eigenvalue at the first iteration step was obtained by 
using eqn (14). The iteration procedure continued until the absolute difference between 
values of successive eigenvalues was less than 10–8. The proof of convergence for the lower 
eigenvalues can be found in [19]. 

4  NUMERICAL EXAMPLES 
The Young modulus (E) was 206.9 Gpa, the Poisson ratio () was 0.3. The buckling 
parameter k is a non-dimensional value related to the critical load of the plate (Ncr), the length 
of the plate side (a) and the flexural rigidity (D), which is obtained according to following 
expression: 
 

𝑘 ൌ
௔మே೎ೝ

గమ஽
. 

 
The buckling parameter k was obtained according to the following boundary conditions: 

S = simply supported edge, C = clamped edge and F = free edge. 
The results obtained were compared to those presented by Mizusawa [9], which were not 

different to those presented by Dawe and Roufaeil in [5], but more types of boundary 
conditions were studied in [9]. The Spline Strip Method was used in [9] and the simply 
supported boundary condition employed the hard restraint condition (tangential rotation is 
restrained). Results presented in Tables 1 and 2 used 128 quadratic boundary elements (260 
nodes) and 256 constant cells as done in [4]. 

The differences in the buckling parameter obtained with the GNL effect using only 
deflection derivatives to those obtained with the present formulation were included in the last 
row of Tables 1 and 2. The results agreed with the comment on the effect of boundary 
condition done by Mizusawa in [9]. Results in Table 2 were not significantly changed when 
the curvatures were included in the GNL effect even for the highest thickness when the 
maximum difference to [4] was 5.02%. On the other hand, results with curvatures included 
in Table 1 were significant for higher thicknesses, as shown by Sun on buckling analyses for 
Timoshenko’s beam in [7]. 

5  CONCLUSIONS 
Results obtained for buckling analyses with BEM and including curvatures in the GNL effect 
agreed to those in the literature. The effect of curvatures was greater for the highest thickness 
in the BEM formulation with reference to those in [9]. The first derivatives of displacements 
(deflection and rotations) were used in the present formulation with the same algebraic 
manipulation done in [4] where only deflection derivatives were employed. Furthermore, the 
BIE for the gradient of displacements employed the tangential differential operator to reduce  
 

𝐴𝑥ሺ௞ାଵሻ ൌ 𝐵𝑥௞, (13) 

𝜆௞ ൌ
൫௫ሺೖశభሻ,௫ೖ൯

൫௫ሺೖశభሻ,௫ሺೖశభሻ൯
. 

(14) 
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Table 1:  Buckling parameter (k) of the first critical load of square plates under uniaxial in-
plane loading. Effect of curvatures relevant. 

Type h/a [4] [9] 
This 
work 

Diff. to 
[9] 
(%) 

Diff. to 
[4] 
(%) 

1) SSSS 0.001 4.0128 4.0 4.0127 0.32 0.00 

 

0.010 4.0105 3.997 4.0088 0.29 −0.04 

0.050 3.9561 3.928 3.9174 −0.27 −0.99 

0.100 3.7952 3.729 3.6638 −1.78 −3.59 

0.200 3.2643 3.119 2.9587 −5.42 −10.33 

2) SSSC 0.001 4.8707 4.8470 4.8707 0.49 0.00 

 

0.010 4.8666 4.8420 4.8633 0.44 −0.07 

0.050 4.7681 4.7170 4.6940 −0.49 −1.58 

0.100 4.4857 4.3720 4.2541 −2.77 −5.44 

0.200 3.6251 3.4180 3.1927 −7.06 −13.54 

3) CSSS 0.001 5.7597 5.7400 5.7597 0.34 0.00 

 

0.010 5.7538 5.7330 5.7509 0.31 −0.05 

0.050 5.6164 5.5740 5.5488 −0.45 −1.22 

0.100 5.2334 5.14 5.0205 −2.38 −4.24 

0.200 4.1468 3.8760 3.6066 −7.47 −14.98 

4) SCSC 0.001 6.7967 6.7430 6.7966 0.79 0.00 

 

0.010 6.7875 6.7310 6.7787 0.70 −0.13 

0.050 6.5742 6.4620 6.3827 −1.24 −3.00 

0.100 5.9914 5.7650 5.4702 −5.39 −9.53 

0.200 4.4260 4.1090 3.7064 −10.86 −19.42 

5) CSCS 0.001 7.7540 7.692 7.7539 0.80 0.00 

 

0.010 7.7370 7.671 7.7284 0.74 −0.11 

0.050 7.3559 7.228 7.1742 −0.75 −2.53 

0.100 6.4138 6.178 5.9525 −3.79 −7.75 

0.200 4.3413 4.056 3.7733 −7.49 −15.05 

6) CCCC 

 

0.001 10.1605  10.1603  0.00 

0.010 10.1382 10.055 10.1225 0.67 −0.16 

0.050 9.6326  9.3115  −3.45 

0.100 8.3374 8.047 7.5670 −6.34 −10.18 

0.200 5.3121  4.5041  −17.94 
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Table 2:  Buckling parameter (k) of the first critical load of square plates under uniaxial in-
plane loading. Effect of curvatures not relevant. 

Type h/a [4] [9] This work 
Diff. to 

[9] 
(%) 

Diff. to 
[4] 
(%) 

1) FSSS 0.001 1.4038 1.402 1.4006 −0.10 −0.23 

 

0.010 1.4029 1.400 1.4027 0.19 −0.01 

0.050 1.3849 1.378 1.3796 0.12 −0.38 

0.100 1.3442 1.327 1.3248 −0.17 −1.46 

0.200 1.2168 1.173 1.1601 −1.11 −4.89 

2) SSSF 0.001 2.3623 2.366 2.3623 −0.16 0.00 

 

0.010 2.3529 2.353 2.3524 −0.03 −0.02 

0.050 2.2520 2.237 2.2403 0.15 −0.52 

0.100 2.0908 2.060 2.0544 −0.27 −1.77 

0.200 1.7178 1.657 1.6387 −1.12 −4.83 

3) FSCS 0.001 1.6515 1.652 1.6515 −0.03 0.00 

 

0.010 1.6536 1.650 1.6533 0.20 −0.02 

0.050 1.6246 1.615 1.6180 0.19 −0.41 

0.100 1.5604 1.539 1.5369 −0.14 −1.53 

0.200 1.3738 1.323 1.3085 −1.11 −4.99 

4) SCSF 0.001 2.3879 2.392 2.3879 −0.17 0.00 

 

0.010 2.3787 2.378 2.3782 0.01 −0.02 

0.050 2.2747 2.260 2.2624 0.11 −0.54 

0.100 2.1090 2.078 2.0708 −0.35 −1.84 

0.200 1.7274 1.666 1.6448 −1.29 −5.02 

5) FSFS 

 

0.001 0.9505 0.9523 0.9505 −0.19 0.00 

0.010 0.9533 0.9516 0.9532 0.17 −0.01 

0.050 0.9449 0.9412 0.9423 0.12 −0.28 

0.100 0.9236 0.9146 0.9137 −0.10 −1.08 

0.200 0.8516 0.8274 0.8213 −0.74 −3.69 

6) SFSF 

 

0.001 2.0370 2.043 2.0370 −0.29 0.00 

0.010 2.0308 2.032 2.0305 −0.07 −0.01 

0.050 1.9508 1.942 1.9449 0.15 −0.30 

0.100 1.8271 1.807 1.8083 0.07 −1.04 

0.200 1.5389 1.497 1.4949 −0.14 −2.94 
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the order of singularity in the kernels of integrals. A BEM formulation for buckling analyses 
employing only the first derivatives of displacements and including a BIE for the gradient of 
displacement with singularities reduced were the main numerical features of the present 
formulation, which present results closer to the literature with a low number of degrees of 
freedom related to the boundary element analysis. 
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