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ABSTRACT 
This paper presents a novel localized collocation Trefftz method (LCTM) in conjunction with Laplace 
transformation for transient heat conduction analysis in heterogeneous materials under temperature 
loading. In contrast to the conventional CTM, the proposed LCTM divides the whole domain into many 
stencil support domains consisting of several discretization nodes. Inspired by the dual reciprocity 
method (DRM) and multiple reciprocity method (MRM), an efficient technique, the generalized 
reciprocity method (GRM), is proposed to derive the problem-dependent T-complete functions for 
approximating the particular solution of the nonhomogeneous heat conduction equations in the local 
subdomains. Based on the moving least square technique and T-complete functions, the LCTM 
numerical differentiation formulation at a certain node can be derived by using a linear combination of 
the T-complete functions at its adjacent discretization nodes in the related stencil support domain. It 
inherits the semi-analytical property from the conventional CTM and avoids the ill-conditioned dense 
matrix problem, which is present particularly in large-scale heat conduction analysis. Some numerical 
examples of heat conduction problems in heterogeneous materials are presented, and the numerical 
results demonstrate the accuracy and efficiency of the proposed LCTM in comparison with the known 
analytical solutions. 
Keywords:  T-complete functions, collocation methods, Laplace transformation, heat conduction, 
moving least square, dual reciprocity method, multiple reciprocity method. 

1  INTRODUCTION 
With the increasing demand for long-term service of equipment structures in high-
temperature environments, numerical simulation plays an important role on the prediction of 
the heat conduction behaviors of the equipment structures [1]–[3]. Here we consider the 
following transient heat conduction equations with thermal loading  ,Q tx  in heterogeneous 

materials, 

   ( , ) , ,         , 0,u t Q t t T   x x x ,                                            (1) 

   B ( , ) , ,         , 0,Bu t g t t T  x x x ,                                        (2) 

 ( ,0) ,         Iu g x x x ,                                                      (3) 
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where ( , )u tx  denotes the temperature,  ,Bg tx ,  Ig x  stands for the prescribed boundary 

condition functions and initial condition functions, the differential operators 
2

, 1

= ij
i j i j

K c
x x t




   
      
  and 

2

1 2
, 1

B= ij i
i j j

p p K n
x




 , in which 

 
 

1 2

1 2

1 2

    ,   

    ,   

   ,  

1, 0,

B= 0, 1,

0, 0,

Dirichlet essential boundary condition operator when

Neumann natural boundary condition operator when

Convective boundary condition operator when

p p

p p

p p

 
  
  

and 

 
1 , 2ij i j

K
 

K  represents the thermal conductivity matrix,   stands for the density, c  

stands for the specific heat, in  denotes the components of the outward unit normal vector in 

the ix -direction. 

2  METHODOLOGY 
This section introduces the numerical method used here to solve eqns (1)–(3), which includes 
Laplace transformation, localized collocation Trefftz method [4], [5], generalized reciprocity 
method and numerical inverse Laplace transformation [6]–[9]. 

2.1  Laplace transformation 

Here Laplace transformation is used to convert eqns (1)–(3) to time-independent PDEs in 
Laplace-space domain. Let us set the definition of Laplace transformation as 

( ) ( )

0
( ( , )) ( , ) ( , )L L ptu t u p u t e dt

    x x x ,                                     (4) 

then we get 

   ( ) ( ) ( ), = , ,     L L L
gu p Q p x x x ,                                          (5) 

   ( ) ( )B , , ,     L L
Bu p g p x x x ,                                        (6) 

where the transformed governing equation operator 
2

( )

, 1

=L
ij

i j i j

K cp
x x




  
     

  and the 

generalized source function      ( ) ( ), = ,L L
g IQ p Q p cg x x x , p stands for the Laplace 

transformation parameter, and the physical quantities in Laplace-space domain are 
represented by the superscript “(L)”. 

2.2  Localized collocation solver 

This study employs a novel localized collocation solver for solving time-independent PDEs 
(5)–(6) in Laplace-space domain. In the localized collocation solver, the localized collocation 
Trefftz method (LCTM) in conjunction with generalized reciprocity method (GRM) is 
implemented, where the generalized reciprocity method (GRM) is inspired from the  
dual reciprocity method (DRM) [10] and multiple reciprocity method (MRM) [11] to 
approximate the particular solution of the nonhomogeneous PDEs in the local  
subdomains. When the T-complete function of the transformed governing equation operator 
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2
( )

, 1

=L
ij

i j i j

K cp
x x




  
     

  at each discretization node can be obtained, the LCTM + GRM 

can be used directly. Otherwise, the analogy differential operator ( )L  to ( )L  should be 
determined according to the easy derivation of the related T-complete functions. Then eqn 
(5) can be rewritten as 

   ( ) ( ) ( ), = , ,     L L L
gu p Q p  x x x ,                                                (7) 

where        ( ) ( ) ( ) ( ) ( ), = , + ,L L L L L
g gQ p Q p u p  x x x . 

By adopting Atkinson’s splitting approach, the approximate solution of eqns (5)/(7) and 
(6) can be expressed as 

     ( ) ( ) ( ), = , + ,L L L
h pu p u p u px x x ,                                                (8) 

where    ( ) ( ), , ,L L
h pu p u px x  stands for the homogeneous and the particular solutions, 

respectively. Assuming that the particular solution  ( ) ,L
pu px satisfies 

   ( ) ( ) ( ), = ,L L L
p gu p Q p x x  or    ( ) ( ) ( ), = ,L L L

p gu p Q p  x x ,                        (9) 

and then the homogeneous solution can be obtained by solving the following updated 
homogeneous equation 

 ( ) ( ) , =0L L
hu p x

 or  ( ) ( ) , =0L L
hu p x

,                                         (10) 

subjected to the updated boundary conditions 

     ( ) ( ) ( )B , , B ,L L L
h B pu p g p u p x x x .                                         (11) 

For each given i -th node 0x i , the related set of its m nearest nodes  1 2x , x , ... , xi i i
m  around 

0
ix  can be found and named as a subdomain i , and the center of this subdomain can be set 

as 
0

1
x x

1

m
i i

j
jm 


  . Then the generalized reciprocity method (GRM) introduces the 

associated differential operator ( )
1

L  to vanish the generalized source term  ( ) ( )L L
g gQ Q  at 

each discretization node, namely, 

     
   

( )
( ) ( ) ( ) ( ) ( ) ( )
1 1 ( )

,
, = , = , =0

,

L
gL L L L L L

p g gL
g

Q p
u p Q p Q p

Q p

 
     

 

x
x x x

x
 or 

     
   

( )
( ) ( ) ( ) ( ) ( ) ( )
1 1 ( )

,
, = , = , =0

,

L
gL L L L L L

p g gL
g

Q p
u p Q p Q p

Q p

 
     

 


 


x

x x x
x

,             (12) 
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where ( )
1

L  could be Laplace-type, Helmholtz-type and Modified-Helmholtz-type operators 

according to the value of 
 
 

 
 

( ) ( )

( ) ( )

, ,

, ,

L L
g g

L L
g g

Q p Q p

Q p Q p

  
  
 




x x

x x
. 

     Assuming that i
k  and i

k  stands for the derived T-complete functions of ( )
1

L  and 

 ( ) ( )L L  , the approximated formulation  ( ) ,L i
ju px  inside the related subdomain i  can 

be represented by a linear combination of T-complete functions i
k  and i

k  with unknown 

coefficients i
k  and i

k  

 ( )

0 0

, +
m m

L i i i i i
j k k k k

k k

u p    
 

 x  with its matrix form ( )
i

L i i i i

i

 
    

 

α
u Ψ Θ χ

β
 .    (13) 

By employing the moving least square technique, the following function can be defined 

       
2

( ) ( )

1

, ,
N

L i L i i i i
j j j

j

u p u p w d


    x x Θ χ ,                               (14) 

in which the weighting function  i
jw d  is defined as the following compact support quartic 

spline function given in the literature [12], 

 
2 3 4

max
max max max

max

1 6 8 3 ,

0,                                                        

j j j
ji

j

j

d d d
d d

w d d d d

d d

      
                
 

,                          (15) 

where maxd  denote the maximum distance between central node 
0

1
x x

1

m
i i

j
jm 


   and the 

nodes of its subdomain i . 

In order to get the LCTM approximated eqn (13), let us minimize the function  ( )Lu  

to determine the unknown coefficient iχ  and then generate the following linear equation 

system at each discretization node, 

i
RDχ b ,                                                                         (16) 

where 
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   

  
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 

   

  

 









 

D , 

 
 

 

 

( )
1

11 1 21 2 1
( )

( )212 1 22 2 2

( )
1 1 2 2

,

,
=

,

L i
i i i

N N
L ii i i

LiN N
R D

i i i
L i

N N NN N
N

u pw w w

u pw w w

w w w u p

                           




    


x

x
b b u

x

. 

Assuming that the matrix D  is reversible, one can get 

   ( ) ( )1 L Li i i
D

 χ D b u W u .                                                    (17) 

Next substituting eqn (17) into eqn (13), the Laplace-space solutions at  1,i px  can be 

represented as 

     ( ) ( ) ( )1
1 1

1

=
NL L Li i i i i

D j j
j

u W u



 Θ D b u ,                                        (18) 

where the weighting matrix W  is a sparse matrix with ns nonzero elements in one row, i.e. 

0,

0, \

i i
j j i

i i
j j i

W

W

    
   

x

x
, ns denotes the number of discretization nodes in the subdomain i . 

Then eqns (5), (7) and (6) can be discretized as follows: 

   

   

( ) ( ) ( )

1

( ) ( ) ( )

1

, = , ,

 

or   , = , ,

N
L i L i L i

j j g j
j i

jN
L i L i L i

j j g j
j

W u p Q p

W u p Q p












 

x x

x

x x

,                                      (19) 

   ( ) ( )

1

B , , ,     
N

i L i L i i
j j B j j

j

W u p g p


  x x x .                                       (20) 

Then the Laplace-space solutions  ( ) ,L i
ju px  can be obtained by solving the system of linear 

algebra eqns (19) and (20). 
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2.3  Numerical inverse Laplace transformation 

Here we introduce one of the well-established numerical inverse Laplace transformation 
algorithms, the fixed Talbot algorithm (FTA) [7], [8], to regain the time-dependent solution 

( , )u tx  in the time-domain from the Laplace-space solutions  ( ) ,L i
ju px . The related 

computational formulation of fixed Talbot algorithm can be given as follow 

   
          

1

1

1
,

2
( , )

Re , 1 i
LT

j

L i T
j

i
Nj

T LLT
j j

j

u e

u T
N e u



 




   




 
    

       







x

x
x

,               (21) 

where 

   cot ij j j    
 ,      cot 1 cotj j j j j       


, 

2

5
LTN

T
 


,   ,     =1,2, , 1j LT
LT

j
j N

N

   . 

For a specific time instant T, only LTN  boundary value problems with the corresponding 

Laplace-transform parameter  =  and jp   


 are required to be solved. In this study, 

=8LTN  is employed in the fixed Talbot algorithm. 

3  NUMERICAL RESULTS AND DISCUSSIONS 
This section presents the example to verify the efficiency of the proposed localized 
collocation Trefftz method (LCTM) in the solution of long-time heat conduction behaviour 
under heterogeneous materials. To measure the accuracy of the proposed LCTM, the relative 
error Rerr and L2 relative error Lerr are defined as follows, 

  ( , ) ( , )
Rerr

( , )

i i
exact
i

exact

u T u T
u

u T




x x

x
,                                                   (22) 

 
 2

1

2

1

( , ) ( , )
Lerr

( , )

N
i i

exact
i

N
i

exact
i

u T u T
u

u T











x x

x
,                                             (23) 

where ( , ), ( , )i i
exactu T u Tx x  stands for the numerical solutions and analytical solutions on the 

node ix  at the time instant T . Unless otherwise specified, the number of T-complete 

functions is chosen as 11TN   and the k-nearest neighbors algorithm is used to select 

12m   nearest nodes of the subdomain i , 

Here we consider the transient heat conduction problem in 2D square functionally graded 
material. 

   ( , )
( ) ( , ) ( , ),   , 0,

u t
K u t c Q t t T

t
 

     

x

x x x x ,                     (24) 
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      1 2 1 2 1 2B ( , , ) B ,         , , 0,uu x x t l x x t x x t T     x ,               (25) 

   1 2 1 2 1 2( , ,0) ,         ,uu x x l x x x x   x ,                                       (26) 

where the thermal conductivity  2

1 2( ) 1K x x  x , the thermal source loading 

  1 2( , ) 4 1 1uQ t l x x   x , the product of the density and the specific heat 1 21c x x   

. The analytical solution is  1 2 1 2( , , ) uu x x t l x x t   . By using Laplace transformation and 

variable transformation ( ) ( )( , )= ( ) ( , )L Lv p K u px x x , the transient heat conduction problem 

can be converted to 

     ( ) ( ), , ,     L L
gp v p Q p  x x x ,                                           (27) 

      ( ) 2
1 2 1 2 1 2 1 2B ( , , ) B 1 1 ,  ,L

uv x x p x x l x x p x x      x ,           (28) 

where the generalized heat source      ( )
1 2 1 2, = 4 1 1L

g u uQ p l l x x x x    x . To vanish 

this generalized heat source term, the associated differential operator 

 
     

( )
( )
1 ( )

1 2 1 2

, 4
= =

, 4 1 1

L
gL u
L

g u u

Q p l

Q p l l x x x x


    

    

x

x
 is implemented here. Then the 

related T-complete functions i
k  and i

k  [13] can be derived as follows: 

         
       

0 1 1 1 1 1

2 1 2 1

, cos , sin , ... ,

cos 2 , sin 2
T T

i i i i i i
k k k k k k

i i i i
N k T k N k T k

I r I r I r

I r N I r N

     

   


,             (29a) 

         
       

0 2 1 2 1 2

2 2 2 2

, cos , sin , ... ,

cos 2 , sin 2
T T

i i i i i i
k k k k k k

i i i i
N k T k N k T k

J r J r J r

J r N J r N

     

   


,            (29b) 

where 1= p  and 
   2

1 2 1 2

4
=

4 1 1
u

u u

l

l l x x x x


    
,    2 2

1 1 2 2=i i i i i
k k kr x x x x    , 

2 2

1 1

=arctan
i i

i k
k i i

k

x x

x x


 
  




, in which  1 2x ,i i i
k k kx x ,  1 2x ,i i ix x   . 

     Under several parameter settings, Table 1 presents the Lerr errors obtained by the 
proposed LCTM+FTA for the transient heat conduction problems with full Dirichlet BCs and 
mixed BCs in comparison with the exact Laplace-space solutions + FTA. In the proposed 
LCTM, 1020 uniform-distributed nodes are used. In the mixed BC cases, only the boundary 
( 1 2=0,0 1x x  ) is imposed on Neumann boundary condition, the remaining boundaries are 

imposed on Dirichlet boundary conditions. From Table 1, it can be found that with different 
parameter settings, the proposed LCTM + FTA provide the satisfactory numerical solutions 
for both the full Dirichlet BC cases and the mixed BC cases, which have a slight loss of 
accuracy in comparison with the retrieved time-dependent solutions from the exact Laplace-
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space solutions by fixed Talbot algorithm. It reveals that the numerical error is mainly  
 

Table 1:   Lerr errors obtained by the proposed LCTM + FTA for the transient heat 
conduction problems with full Dirichlet BCs and mixed BCs in comparison with 
the exact Laplace-space solutions + FTA under several parameter settings. 

Parameter setting 
Lerr errors

Full Dirichlet BCs Mixed BCs Exact Laplace-space solutions 
=0.1, 10ul T   1.39E  2 1.56E  2 1.07E  2 

=0.1, 100ul T   1.41E  3 1.57E  3 1.08E  3 

=0.1, 500ul T   2.82E  4 3.15E  4 2.17E  4 

=0.01, 10ul T   4.88E  3 6.96E  3 1.08E  3 

=0.01, 100ul T   4.91E  4 7.00E  4 1.08E  4 

=0.01, 500ul T   9.84E  5 1.40E  4 2.16E  5 
 
appeared in the ill-posed NILT process. Moreover, the LCTM solutions for the full Dirichlet 
BC cases are slight accurate than the ones for the mixed BC cases. Fig. 1 displays the error 
distributions of the proposed LCTM+FTA for transient heat conduction problems with 

0.01ul   subjected to full Dirichlet BCs and mixed BCs at different time instants (T = 10, 

100, 500). It can be observed from Fig. 1 that the maximum relative errors are appeared at 
the central region of the computational domains for full Dirichlet BC cases and the center 
region of the left boundary of the computational domains for mixed BC cases. Similar to the 
conclusions drawn from Table 1, the LCTM solutions for the full Dirichlet BC cases are 
slight accurate than the ones for the mixed BC cases. 

4  CONCLUSIONS 
This paper proposes a novel localized collocation solver based on the localized collocation 
Trefftz method (LCTM) in conjunction with fixed Talbot algorithm (FTA) and the 
generalized reciprocity method (GRM) for transient heat conduction analysis in 
heterogeneous materials under thermal loading. The transient heat conduction analysis in 
heterogeneous materials with arbitrary spatial variations can be carried out by implementing 
the proposed LCTM coupled with the GRM, where the proposed scheme provides more 
accurate and efficient solutions than those obtained by the traditional FEM due to the use of 
the semi-analytical T-complete functions, and it is available for transient heat conduction 
analysis in heterogeneous materials without the related derived T-complete functions. The 
satisfactory numerical solutions can be obtained by using the proposed LCTM + FTA, which 
have a slight loss of accuracy in comparison with the retrieved time-dependent solutions from 
the exact Laplace-space solutions by fixed Talbot algorithm. It reveals that the numerical 
error is mainly appeared in the ill-posed NILT process. Of course, it would be interesting to 
develop an appropriate NILT to make the proposed localized collocation solver more 
efficient for transient heat conduction analysis in heterogeneous materials under thermal 
loading, and investigates the efficiency of the proposed scheme for solving the transient heat 
conduction problems without the close-form analytical solutions, which are now under 
intense study. 
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(a) Full Dirichlet BCs at T = 10                          (b) Mixed BCs at T = 10 

 
(c) Full Dirichlet BCs at T = 100                        (d) Mixed BCs at T = 100 

 
(e) Full Dirichlet BCs at T = 500                       (f) Mixed BCs at T = 500 

Figure 1:    Error distributions of the proposed LCTM + FTA for transient heat conduction 
problems with full Dirichlet BCs and mixed BCs at different time instants (T = 
10, 100, 500). 
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