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ABSTRACT 
This study presents an approach for the calculation of Cauchy-type integrals at points located near 
contours. It is evident that the kernel of a Cauchy integral becomes close to singular as soon as one 
intends to calculate the value of the integral close to the contour. As a result, more nodes in a 
quadrature formula are needed, in order to reach acceptable accuracy in the calculations. This 
problem is faced in standard formulations when analysing stress–strain states after obtaining 
numerical solutions of certain singular integral equations; as well as in non-classical formulations, 
where the data close to the contour are used as input. On the other hand, one can employ, for the 
contour points, the Plemelj–Sokhotski formulas, assuming calculation of the singular integral is 
followed by addition of a known non-integral term. In this study, we use expansions into power series 
to calculate stress characteristics at points near the contours, suggest an algorithm, and numerically 
analyse two cases that are relevant to direct and inverse formulations in plane elasticity. 
Keywords:  plane elasticity, Cauchy integrals, singular integral equations, inverse problem, 
mathematical optimisation. 

1  INTRODUCTION 
This study aims to develop numerical techniques for the calculation of complex potentials 
near contours. It is well known that the general solution of a plane elastic problem is 
expressed via two independent complex potentials [1]. These can be presented by Cauchy-
type integrals with unknown densities, as follows: 
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Here,  is a closed or open contour (or set of contours), and the densities g(t) and h(t) are 
not independent of each other. They are found by solving certain singular integral equations 
corresponding to a particular boundary value problem under consideration. 

The method of mechanical quadratures [2] is often used to solve a system of complex 
singular integral equations (CSIE), because of its high efficiency and simplicity in 
programming. The sought density is found at the collocation points that depend on the 
quadrature formulas used, usually presenting the roots of the Chebyshev polynomials. 
Interpolation at other contour points can be made by different methods, such as linearly 
piecewise, cubic splines or by interpolation polynomials. It is worth noting that the 
accuracy of the interpolated solution is always not as good as the accuracy of the solution at 
the collocation points; that is, 2n where n is the order of the Chebyshev polynomials used in 
approximation of the sought density. The contour values of the complex potentials are 
found by the Plemelj–Sokhotski formulas: 

  ),()()(2 gg S , (2) 
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where S(g) is the singular integral below: 
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Numerical methods for the calculation of singular integrals (3) are well developed. For 
instance, if  is an open interval (−1,1), then for unbounded solutions at the ends, the 
following quadrature formula can be used [2]: 
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Here 21/)arccossin()(1),arccoscos()( xxnxnUxnxnT  are the Chebyshev 

polynomials of the first and second order, respectively; while the nodes k  are the roots of 

( )nT x , such as: 2 1
2

cos , 1,k
k n

k n    . It is evident that the second term on the right-

hand side of eqn (4) disappears at the roots of 1( )nU x , i.e., at the points 

cos , 1, 1m
m n

m n    . Therefore, eqn (4) becomes: 
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This coincides with the standard quadrature formula for regular integrals. This equation is 
exact, if u(t) is a polynomial of up to 2n degree. 

Consider the Cauchy-type integral in eqn (1) and apply the same quadrature formula to 
it, which results in: 
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This equation is exact if the integrand (without the weight) is a polynomial of up to 2n–1 
degree. We can see that for small y the denominator in eqn (6) becomes close to singular, 
and so cannot be accurately approximated by the polynomials. In practice, it means that for 
acceptable accuracy, one would need to use approximations using polynomials of large 
degrees; thus, a large number of nodes and collocation points would be required. It can be 
estimated that for the values of y smaller than the minimum difference of k m   there 

would be strongly degraded accuracy of eqn (6). 
We aimed to develop simple algorithms that do not require the use of a large number of 

nodes for the calculation of integrals in eqn (1), specifically for the points located close to 
the contours. Our main idea was to use the properties of holomorphic functions and 
Taylor’s expansion near the contours. 
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2  INTEGRAL EQUATIONS FOR USE IN DIRECT AND INVERSE PROBLEMS 
General solutions for plane elastic problems in terms of complex potentials (1) are given by 
the Kolosov–Muskhelishvili equations for the stress and displacement components in a 
Cartesian coordinate system Oxy, as follows [1]: 
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Here, , ,xx yy xy    are stress components; P is mean stress, D is the complex stress 

deviator, x yW u iu   is complex displacement vector with the components ,x yu u  along 

the x and y axes, respectively. Also, G is the shear modulus,  = (3–4) for the plain stress 
and  = (3 − )/(1 + ) for the plane stress conditions, where is Poisson’s ratio, and 

( ) ( )z z  , ( ) ( )z z    are complex potentials (holomorphic functions of a complex 

variable z = x + iy). 
By making use of eqns (1)–(3), we find the following expressions for contour values of 

stress functions P and D: 

 )()()(2 ggggP SS   (8) 

 ))(()2()2(2 gtgiehgiehD  SS  (9) 

Here,   is the angle between the positive direction of the real axis and the tangent to the 
contour. For the limiting values of the stress vector )()()(  tin  
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 ))((2)2(2)()()2(2 gtiegiehiegghieg  SSSS  (10) 

 ))((2)2(2)()()2(2 gtiegiehiegghiegW  SSSS  (11) 

Now we can derive the following CSIE for the first and the second fundamental problems 
of plane elasticity. Assuming that the known stress vector N + iT is continuous across the 

contour, one finds gieh  2  and  thus, from eqn (10) we find: 

 iTNgtieggieiegg 22))((2))(2(2)()(  SSSS  (12) 

In the second fundamental problem, we assumed that the known displacement 

vector x yW iW   is continuous; thus, hieg  2 and so we get: 
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 yWixWgtieggieiegg  22))((2))(2(2)()( SSSS  (13) 

It can be shown that these CSIE coincide with previously published CSIE [3]. It is 
evident that both are of the first kind, so they can be solved by the method of mechanical 
quadratures outlined above. As a result, one finds the density g(t), as well as h(t). Thus, 
both potentials in eqn (1) become known. However, in order to analyse the stress–strain 
state in the entire domain, one should perform integration of the complex potentials, to 
obtain the stress functions and stress components, which implies integration at the near-
contour points. 

Now let us discuss a previously-considered non-classical formulation [4]. The problem 
was formulated as follows: Find the complex potentials by using the data on the direction 
of the maximum principal stress (known angle j counted from the real axis at a number 
of discrete points zj (j = 1…N), given inside the domain (these may also be on the 
boundary).  

The principal directions are determined by the complex stress deviator as follows: 

 )(2)arg(,0
2

21
max,max 
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 DDieD . (14) 

Here, 1 and 2 are the principal stresses,  is the direction of the major principal stress, 1, 
max is the maximum shear stresses. Bearing in mind that max is real, one can write: 

 0),(2),(Im 
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So far as the principal directions are known at points zj one arrives at the following 
optimisation problem: 
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Let us seek the complex potentials in eqn (1), assuming continuity of the stress vector 
across the closed contour  (similar to the first fundamental problem in eqn (12)), and 
introduce the real and imaginary parts of the sought function: 

    ( ) Re ( ) , ( ) Im ( )t g t t g t   . (17) 

Then, the complex potentials assume the following form: 
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Thus, the expression for the complex stress deviator is: 
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Expressions (18) and (19) should satisfy the conditions of the single valuedness of the 
displacements: 

  ( ) ( ) 0t i t dt 


  . (20) 

The boundary values of eqn (19) are to be found using eqns (2) and (3), as follows: 

 )(12
1)2(2  iieieD RS  (21) 

Here, the regular integral R1 appeared due to the second integral on the right-hand side of 
eqn (19), which is non-singular: 
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In the optimisation problem (16), one must use the expression for the deviator in eqn 
(19) for internal points and in eqn (21) for boundary points. As it is evident from eqn (19) 
for the points located close to the contour, the first integral on the right-hand side is of a 
form similar to eqn (6). Calculation of the second integral does not present any numerical 
difficulties, because its kernel is exp[–2iarg (t − )], i.e., piecewise continuous and 
bounded. 

Numerical approaches for solving eqn (16) can also be based on the method of 
mechanical quadratures, which implies numerical calculations of the integrals in eqns (19) 
and (21). If we assume that all data are internal, then the problem is reduced to a linear 
system of algebraic equations: 
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Here, kt  and kw  are, respectively, nodes and weights of a quadrature formula used for the 

discretisation, ( )k kt   and ( )k kt   are the sought real values of the density of the 

potential, while ( )k kt   are the slope angles at the nodes, j are the known principal 

directions at the data points zj. 
The system shown in eqn (23) consists of N + 2 real equations for the determination of 

2n real unknowns. It is overspecified if N + 2 > 2n; and thus, should be solved 
approximately using the least squares method. We point out that for experimentally 
acquired data subject to measurement errors, the matrix of the system is affected by these 
errors. In the case when a part of the data is on the boundary, the first group of equations in 
eqn (23) should be modified by adding non-integral terms in eqn (21), which does not 
change its dimensions. 
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3  NUMERICAL APPROACH 

3.1  Algorithm 

It is evident from the CSIE that we presented in the previous section, that a loss of accuracy 
in calculations of the complex potentials is observed for the Cauchy type integrals 

1 ( )

2

g t
dt

i t z


  (regardless of whether the contour is closed or open), when point z is close to 

the contour. On the other hand, the singular integrals do not introduce any difficulties, even 
though in accordance with eqn (2), addition of one extra term is required. This allows us to 
employ Taylor’s expansion of the complex potentials (1). As soon as eqn (1) presents two 
holomorphic functions which derivatives with respect to the conjugated variable, the 
Cauchy–Riemann conditions, vanish one can write: 

 ( ) ( ) ( )( ) (| |),z z o z            . (24) 

The derivative of the holomorphic function is found in the form [5]: 
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i t z
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
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Note that this equation is valid for any smooth, closed contours, as well as for the open 
contours; provided that condition (20) is satisfied. Its boundary value can be found by the 
Plemelj–Sokhotski formulas as well as the boundary value of (). Substitution of these 
boundary values into expression (24), leads to the following approximate equation: 

 2 ( ) ( ) ( )( ) ( ) ( ) ( ),z g g z g z g            S S . (26) 

The proposed algorithm supposes that a specific data point z is supplied, and the 
equation for  is known. It assumes the following simple steps:

1. Find the closest distance from the point to the contour. 
2. If this distance is greater than a selected threshold, then perform integration based on 

the usual quadrature formulas for regular integrals. 
3. If the minimum distance is smaller than the threshold, then find the distance from z to 

the nearest node: 

a) If this distance is small enough (below the threshold), then calculate the value of 
the complex potential by eqn (26), using the nearest node as the contour variable . 

b) If the distance is greater than the selected threshold, then use an interpolation 
formula to determine  as the point closest to z, followed by calculations using eqn 
(26). Interpolation of the solution is also required, due to the non-integral terms 
present in eqn (26). 

Note that if the contour is given by a set of ordered data points, then one may need to 
use an interpolation procedure. Polygonal approximation seems to be the simplest way, as it 
also allows one to find the slopes to the contour directly. More advanced approximations 
can be obtained by applying smoothing (e.g., by the fast Fourier transformation technique). 
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3.2  Example: Stresses near a rectilinear crack 

Let us consider the case of a rectilinear crack formed by a normal load, such that the 
density of the potential (z) is bounded at the ends. For the sake of simplicity, let us 
assume that the potential is dimensionless (normalised by a characteristic value of applied 
load) and that the crack is of a unit half-length. Then it can be presented as follows: 

 
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Here, the term regul ( )z  on the right hand side remains regular, when z tends to the 

contour. Therefore, we can analyse the first term sing ( )z  only. 

Evaluation of the Cauchy integral gives an analytical solution for sing ( )z  in the form: 
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Its derivative is: 
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Therefore, Taylor’s expansion for an analytical solution can be presented as: 
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Numerical calculations of sing ( )  at the collocation points ( 1 1)m m n    

produce: 
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For simplicity, let us assume that = m + i, where  << 1. Thus, eqn (26) assumes the 
form: 
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In Table 1 we show the results of calculations using eqn (32) in comparison with the 
exact solution (28), analytical approximation (30) and calculations using the quadrature 
formula applied directly to eqn (27), for n = 8 and  = 0.5, 0.05, and 0.005. 

It is evident from Table 1 that analytical and numerical approximations (3rd and 4th 
columns) produce the same results, which can be explained by the high accuracy of the 
quadrature formula of the Chebyshev–Gauss type. The number of nodes n = 8 is even 
redundant, but it is used here to compare the results at more points. For  = 0.5, the results 
using Taylor’s approximations are unsatisfactory, while exact and direct calculations  
 

Table 1:  Exact, analytical, numerical and direct calculations of the complex potential. 

Point 
coordinates 

Exact (28) 
Analytic 

approximation 
(30)

Numerical 
approximation 

(32)

Direct 
calculations 

of (27) 
 = 0.5     

0.924 + 0.5 i −0.186 + 0.169 i −0.212 + 0.795 i −0.212 + 0.795 i −0.186 + 0.169 i 
0.707 + 0.5 i −0.166 + 0.222 i −0.104 + 0.604 i −0.104 + 0.604 i −0.166 + 0.222 i 
0.383 + 0.5 i −0.102 + 0.283 i 0.059 + 0.565 i 0.059 + 0.565 i −0.102 + 0.283 i 

0.5 i 0.309 i 0.25 + 0.5 i 0.25 + 0.5 i 0.309 i 
−0.383 + 0.5 i 0.102 + 0.283 i 0.441 + 0.358 i 0.441 + 0.358 i 0.102 + 0.283 i 
−0.707 + 0.5 i 0.166 + 0.222 i 0.604 + 0.104 i 0.604 + 0.104 i 0.166 + 0.222 i 
−0.924 + 0.5 i 0.186 + 0.169 i 0.712 − 0.412 i 0.712 − 0.412 i 0.186 + 0.169 i 

 = 0.05     
0.924 + 0.05 i −0.405 + 0.176 i −0.437 + 0.252 i −0.437 + 0.252 i −0.43 + 0.133 i 
0.707 + 0.05 i −0.329 + 0.33 i −0.329 + 0.379 i −0.329 + 0.379 i −0.346 + 0.157 i 
0.383 + 0.05 i −0.181 + 0.438 i −0.166 + 0.472 i −0.166 + 0.472 i −0.189 + 0.164 i 

0.05 i 0.476 i 0.025 + 0.5 i 0.025 + 0.5 i 0.165 i 
−0.383 + 0.05 i 0.181 + 0.438 i 0.216 + 0.452 i 0.216 + 0.452 i 0.189 + 0.164 i 
−0.707 + 0.05 i 0.329 + 0.33 i 0.379 + 0.329 i 0.379 + 0.329 i 0.346 + 0.157 i 
−0.924 + 0.05 i 0.405 + 0.176 i 0.487 + 0.131 i 0.487 + 0.131 i 0.43 + 0.133 i 

 = 0.005     
0.924 + 5E − 03 i −0.456 + 0.189 i −0.459 + 0.197 i −0.459 + 0.197 i −0.462 + 0.017 i 
0.707 + 5E − 03 i −0.351 + 0.351 i −0.351 + 0.356 i −0.351 + 0.356 i −0.353 + 0.017 i 
0.383 + 5E − 03 i −0.19 + 0.459 i −0.189 + 0.463 i −0.189 + 0.463 i −0.191 + 0.017 i 

5E − 03 i 0.498 i 2.5E − 03 + 0.5 i 2.5E − 03 + 0.5 i 0.017 i 
−0.383 + 5E − 03 i 0.19 + 0.459 i 0.194 + 0.461 i 0.194 + 0.461 i 0.191 + 0.017 i 
−0.707 + 5E − 03 i 0.351 + 0.351 i 0.356 + 0.351 i 0.356 + 0.351 i 0.353 + 0.017 i 
−0.924 + 5E − 03 i 0.456 + 0.189 i 0.464 + 0.185 i 0.464 + 0.185 i 0.462 + 0.017 i 
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coincide. For  = 0.05, all results are more or less of the same quality as exact solutions. For 
 = 0.005, calculations using direct Chebyshev integration of eqn (27) produce incorrect 
results, especially for the imaginary part of the complex potential (z). In the meantime, 
Taylor’s approximations (30) and (32) are remarkably close to calculations using the exact 
eqn (28). 

3.3  Example: Principal stress directions near a rectilinear crack 

We will use the results of the previous subsection to illustrate what are typical values of 
errors in the calculation of principal direction near a rectangular crack. For this purpose, let 
us select the derivative of the potential (z) in the form similar to eqn (27): 
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Here, R ( )z  is given by a regular integral, when z tends to the contour point . We can 

still accept that the condition of single valuedness is satisfied, because the density of ( )z  

is odd and equal to ttt arcsin21
2

 . 

For rectilinear boundaries, the second potential is ( ) ( )z z z    ; therefore, 

( , ) ( ) ( )D z z z z z    and the principal directions are determined by the argument of 

( )z  alone. Simplify by omitting the regular term in eqn (33), to find an exact expression 

for the principal directions: 
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On the other hand, using Taylor’s expansion for the function ( )zS  one can find an 

approximate expression for the principal directions at points m i  : 
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We can further use this equation only without referencing numerical calculations, because 
the results of both numerical and analytical calculations fully coincide, as was evident from 
the 3rd and 4th columns of Table 1. 

The results of calculations are summarised in Table 2 for  = 0.5, 0.05, and 0.005. It is 
evident from Table 2 that approximation (35) is incorrect for  = 0.5, while exact and direct 
calculations coincide. For  = 0.05, both approximate and direct calculations possess 
reasonable accuracy. For  = 0.005, the direct numerical calculations failed, while the 
approximation coincides with the exact calculations. 
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Table 2:   Comparisons of exact, approximate and direct calculations of the principal 
directions (degrees). 

Point coordinates Exact (34) Approximation (35) 
Direct calculations 

from eqn (33) 
 = 0.5    

0.924 + 0.5 i 21 38 21 
0.707 + 0.5 i 27 40 27 
0.383 + 0.5 i 35 48 35 

0.5 i 45 58 45 
−0.383 + 0.5 i 55 70 55 
−0.707 + 0.5 i 63 85 63 
−0.924 + 0.5 i 69 −75 69 

 = 0.05    
0.924 + 0.05 i 12 15 9 
0.707 + 0.05 i 23 25 12 
0.383 + 0.05 i 34 35 20 

0.05 i 45 46 45 
−0.383 + 0.05 i 56 58 70 
−0.707 + 0.05 i 67 70 78 
−0.924 + 0.05 i 78 82 81 

 = 0.005    
0.924 + 5E − 3 i 11 12 1 
0.707 + 5 E − 3 i 23 23 1 
0.383 + 5 E − 3 i 34 34 3 

5 E − 3 i 45 45 45 
−0.383 + 5 E − 3 i 56 56 87 
−0.707 + 5 E − 3 i 67 68 89 
−0.924 + 5 E − 3 i 79 79 89 

4  CONCLUSIONS 
In this study, we investigated the applicability of Taylor’s expansions and suggested an 
algorithm for the calculations of some characteristics of the stress state near the contour. 
We show that for small distances from the contour, direct application of quadrature 
formulas fails, while our proposed numerical approach produces highly accurate results. 
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