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ABSTRACT 
This paper explores non-axisymmetric boundary value problems for the Laplace equation. 
Neumann’s, Dirichlet’s and mixed boundary conditions are involved, supposing their periodic 
behaviour. Boundary value problems arise as auxiliary issues in many practical applications. Among 
them there are problems related to numerical simulation of vibrations of fluid-filled elastic shells of 
revolution, coupled vibrations of elastic circular plates resting on a sloshing liquid, crack propagation 
in elastic mediums, and more. The common feature in these problems is the necessity to obtain the 
numerical solution of the Laplace equation under different boundary conditions. As these problems 
are auxiliary, it is necessary to obtain their numerical solutions with high accuracy. The most 
effective method to solve these problems is the boundary elements method (BEM). Here a new 
variant of BEM is proposed for the axisymmetric calculation domain with given periodic functions 
for boundary conditions. The shape of the calculation domain allows us to reduce surface integral 
equations to one-dimensional ones. In doing so, we must evaluate elliptic-like inner integrals with 
high accuracy, to elaborate the method of calculation of the outer integrals with logarithmic, Cauchy 
or Hadamard finite part singularities. An efficient method for evaluating elliptic-like integrals was 
developed using a special series for integrands, and the quadrature equations were obtained for high-
precision calculation of outer integrals. The method developed can be used to determine free vibration 
modes and frequencies for elastic fluid-filled shells of revolution. 
Keywords:  boundary element method, periodic boundary conditions, singular integral equations, 
free vibrations, fluid-filled elastic shells. 

1  INTRODUCTION 
Mixed boundary value problems for elliptic equations with periodic boundary conditions 
occur in a wide range of engineering applications, such as composite and fluid mechanics 
[1], [2], vibrations of structural elements [3], crack propagation in elastic mediums [4], 
fluid–structure interactions [5], [6], cyclically symmetrical structure design [7], and more. 

In modelling mechanical processes, systems of differential equations with periodic 
boundary value conditions are usually involved. Analytical solutions of these equations 
have been obtained for some simple cases, but advanced numerical methods are currently 
needed in mechanical and engineering applications [8], [9]. For successive applications of 
numerical methods to solve periodic boundary value problems (PBVP), theorems are 
needed regarding periodic behaviour of the solutions. Some of these theorems were proven 
[10], [11]. The existing theorems allow us to use Fourier series coupled with the finite 
element method (FEM), finite difference method (FDM) or boundary element method 
(BEM), widely used in PBVP for differential equations. In using FEM and FDM, the main 
obstacle is mesh-generating for an arbitrary domain that requires large amounts of 
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processing power and computation time. In recent decades, the BEM originated and 
developed by Carlos Brebbia [12] has become increasingly popular, due to its unique 
feature of mesh reduction. 

In this paper, the non-axisymmetric periodic boundary value problems of free liquid 
surface vibrations in shells of revolution and elastic shell vibrations are formulated, and 
then solved using BEM coupled with Fourier series. 

2  NON-AXISYMMETRIC PERIODIC BOUNDARY VALUE PROBLEMS  
OF SHELL VIBRATIONS 

2.1  Problem statement 

Consider a coupled problem of dynamic behaviour of an elastic shell of revolution partially 
filled with a liquid. Such shells can be used as models for numerical simulation of liquid 
disturbance/sloshing and vibrations of the shell walls in fuel tanks, oil storage reservoirs, 
water storage containers, etc. The wet part of the shell surface is denoted as S1 and the 
liquid free surface as S0 (Fig. 1). 
 

    

Figure 1:  Shells of revolution partially filled with a liquid. 

For a liquid that is flowing, we consider two conservation laws: conservation of mass 
and conservation of momentum. Letting V be the velocity field of the fluid,  the liquid 
density, the continuity equation (law of mass conservation) in the absence of mass sources 
is (eqn 1): 

  0div 



V
t

. 

The momentum conservation law states that the rate of momentum change is equal to the 
applied forces. Forces acting on the liquid control volume are the integral of the stress 

tensor, ij , over the surface; plus the integral of body force vectors per unit mass, over the 

volume. Considering the motion of a continuous, viscous fluid, the stress in the fluid is 
composed of two parts; a locally isotropic part proportional to the scalar pressure field and 
a non-isotropic part, due to viscous friction. The stress tensor follows eqn (2); 
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ijijij p  , 

where p is the pressure, ij is the Kronecker unit tensor, and ij is the viscous stress tensor. 

Suppose that the liquid inside the shell is an ideal  0ij  one, and the surface tension 

is neglected: We then have the following eqn (3) for motion under the force of gravity g: 

   gzp
t







 



 VV
V

. 

For incompressible inhomogeneous liquids, conservation laws in linear formulation 
became: 

  0div V ,                                                                   (1) 

 gzp
t






V

.                                                             (2) 

If the fluid flow is not rotational ( 0rot V ), then the potential flow theory could be 
applied. Thus, a scalar velocity potential of  tzyx ,,,  can be introduced, with 

V . Then eqn (1) is transformed to the Laplace equation: 

0 .                                                                      (3) 

From momentum conservation law (2) we obtain: 







 



 gz
t

pp 0 ,                                                           (4) 

where p0 is atmospheric pressure. 
To determine the potential , a mixed boundary value problem for the Laplace equation 

was formulated. The non-penetration condition of the wet tank surface (S1) was applied 
[13]. On the free surface, the following kinematic and dynamic boundary conditions are 
satisfied [6], [9]: 

0,
0

0

0 







S
S

pp
tn

.                                                  (5) 

Here, an unknown function  tyx ,,  is the free surface elevation measured vertically, 

above the still water level. 
This function describes the shape and position of the free surface. Thus, the following 

boundary value problem was formulated: 

0 ,   0
1





Sn
,   0,

0
0

0 







S
S

pp
tn

,                             (6) 

where 0pp   is received from eqn (4) at  tyxz ,, , and n is an external unit normal to 

the corresponding surfaces. 
The solvability condition for the Neumann problem (6) is given [13]: 
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00

0





 dS
n

S

.                                                             (7) 

The boundary value problem (6), (7), was formulated for studying the liquid vibrations 
within the shell. Problems involving axisymmetric bodies with arbitrary boundary 
conditions are best treated using cylindrical coordinates. With a cylindrical coordinates 
system (, z, ), one can represent the velocity potential  that satisfies a given boundary 
value problem (6), (7), as follows [6]: 

   
 


N

l

M

k
lklk ztd

0 1

,, .                                                   (8) 

From eqns (6) and (8), the next presentation is obtained for determining the free surface 
elevation : 

   
 


N

l

M

k
lklk td

g
0 1

,0,
1

.                                                       (9) 

Here,  tdlk  are unknown time-dependent functions, while the lk  functions satisfy the 

following equations: 

lk
S

lk

S

lk
lk nn










01

,0,0 .                                           (10) 

Considering fluid-filled elastic shells without including the force of gravity [5], we 
arrive at a similar problem. Namely, the solution for the potential  in the following 
equation is in use: 

   
 


N

l

M

k
lklk ztc

0 1

,, . 

Here,  tclk  are unknown time-dependent functions, while functions for lk  are obtained 

from the following boundary value problems [5]: 

0,,0
0

1






Slklk

S

lk
lk u

n
,                                           (11) 

where the lku  functions are their own modes of the empty elastic shell vibrations. 

If the fluid-filled shell being considered is a shell of revolution, then dependency of the 
angular coordinate for unknown functions can be most conveniently described by Fourier 
series. Therefore, for the lk  and lku  functions, the following equations are used: 

         lzuzul lklklklk cos,~,,,cos
~

,0, . 

Then, discretisation of the body requires only meshing the shell generator with one-
dimensional boundary elements, which substantially decreases the number of unknowns. 
The drawback of this method is in the increasing complexity of numerical implementation, 
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because integrals over the angle for shells of revolution must be calculated for every 
Fourier term. Herein, we have elaborated this effective method to calculate the angular 
integrals. 

2.2  Periodic boundary value problems 

Without loss of generality, the periodic boundary value problem statement in cylindrical 
coordinates can be expressed in the following form: 

    0,cos,,0
0

1






S

S

ulzf
n

u
u .                                        (12) 

Here, u  is an unknown function,   is the Laplace operator, S0 is the free surface (of 
liquid), S1 is for the inside shell surfaces,  zf ,  is a known boundary function, and l  is an 

integer number. 
It should be noted that the boundary conditions in problems (10)–(12) are non-

axisymmetric. So we need to use this property in integral representations of the problems 
under consideration. To solve the Laplace equation, we used the well-known third Green’s 
identity, which represents solutions for the Laplace equation in the following integral form: 

              



SS

dS
n

u
udSuqu rrrξrrrξξ ,,2 ** . 

Here,  rξ,*u and  rξ,*q  are expressed by Green’s function of the Laplace equation and 

its normal derivative, and 10 SSS  . 

Hereinafter, we will suppose that the body’s boundary is axisymmetric with non-
axisymmetric boundary conditions; therefore, we can make a transformation from surface 
integral to contour in the following manner, where  is a generator of the surface S: 

               













2

0

*
2

0

* ,,2 d
n

u
udduqdu rrξrrrξrξ .                 (13) 

In this study, due to the boundary conditions in eqn (12), we can present the unknown 
function in the following form: 

      lzuu cos,r . 

Here  zu ,  is an unknown axisymmetric function, yet non-axisymmetric behaviour within 

the problem is taken into account by multiplying this function by cosines, so that eqn (13) 
takes the form of: 

                 

       

 


















2

0

*

2

0

*
2

0

*

.cos,,

cos,,cos,,2

1

01

dludzf

dludz
n

u
dlqdzuu

rξr

rξrrξrξ
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Here, 10  , 0  and 1  are generators of the surfaces 0S  and 1S , respectively. So 

the topical issue addressed here is to calculate axial integrals with Green’s functions, 
multiplied by trigonometric functions. 

2.3  Axial integrals with Green’s functions and trigonometric functions 

It is necessary to find a way of estimating the next integrals: 

           



2

0

*
00

2

0

*
00 cos,,,,,cos,,,, dlqzzIdluzzI qu rξrξ .            (14) 

Here, the following Green’s functions are involved: 

      
3

** ,
,,

1
,

rξ

rnrξ
rξ

rξ
rξ







 qu .                                    (15) 

By using the expressions described in eqn (15), one can obtain  00 ,,, zzIu   as seen in the 

next expression: 

       
   








2

0 00
2

0
2
0

2

0
2

0

*

cos2

cos
cos,

zz

dl
dlu rξ . 

Then, with substitution of: 




 2
2 0

0 , 

the integral  00 ,,, zzIu   transforms into the following: 

     
 

 












2

0
222

0
2

0

0
00

sin1

2cos

)(

cos14
,,,

m

dl

zz

l
zzI

l

u , 
 20

2
0

02

)(

4

zz
m




 .

 

To calculate this integral, we need to expand the cosine functions into a series. This 
procedure can be accomplished by using De Moivre’s equation: 

          

   














l

k

kkklk
l

l

k

kkklk
l

lil

iCiC

ililel

2

0

2
2

2

0

2
2

22

.Re2sin2cos2sin2cosRe

sincosRe2sin2cosReRe2cos

 

It should be noted that   12,0Re  nki k . 

Thus, by changing the summation indexes, it is possible to obtain: 
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 

 

 





 









































l

p

l

ps

ssl
pl

p
l

s

l

p

pl

k

kkk
pl

pp
l

p

l

p

pplp
l

p
l

p

pplp
l

p

l

k

kkklk
l

CC

lsplk

psk

kps

CC

CC

lplkpk

kp
iC

0

22
2

0 0

222
2

0

222
2

0

2)(22
2

2

0

2
2

sin1

0sin)1(sin)1(

sin)sin1()1(sincos)1(

2,00

2
Re2sin2cos

.

 

If we then add the term  





 

1

0

22
2 sin1

p

s

ssl
pl

p
l

s CC  into the inner sum, the above result does 

not change due to the properties of the Euler’s gamma function. We can therefore get an 
expression with independent sum indexes: 

   

  .sin1

sin1sin1

0 0

2
2

2

0 0

22
2

0

22
2

 



 




 




 








l

s

l

p

sl
pl

p
l

ss

l

p

l

s

ssl
pl

p
l

s
l

p

l

ps

ssl
pl

p
l

s

CC

CCCC

 

The inner sum can be calculated using the Yegorychev summation method [14]: 

s
sl

ss

p

sl
pl

p
l

l

p

sl
pl

p
l C

sl

l
CCCC 2

0

2
2

0

2
2

4










 

 .

 

Thus, the double cosine function has the following presentation: 

   


 




l

s

ss
sl

ss

C
sl

l
l

0

22 sin
14

2cos .

 

Using expansion in eqn (16), the integral  00 ,,, zzIu   was transformed into: 

     
   


















l

k

k
k
kl

kkl

u
m

d
C

lk

l

zz

l
zzI

0

2

0
22

2
2

2
0

2
0

0
00

sin1

sin4)1(

)(

cos14
,,, .             (16) 

The squares of the sine functions can be expanded into the following series: 





k

s

ss
k

s
k

k mC
m 0

22
2

2 )sin1()1(
1

sin .

 

So we get eqn (17): 
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  










 k

s

s
s
k

s
k

k

dmC
mm

d

0

2

0

2

12
22

2

2

0
22

2

sin1)1(
1

sin1

sin
.                        (17) 

Finally, in order to evaluate the integral  00 ,,, zzIu   we used equations given in eqns 

(16) and (17). 
In reference [15], the special elliptic integrals are introduced: 

   





2

0

2

12
22 sin1 dmmE

s

s .                                               (18) 

The simplest approach for calculation of the integrals in eqn (18) is by using numeric 
integration, but increasing the order s of integrals, so numerical error also grows. In 
reference [15], the recurrent equations are in use. The special elliptic integrals of order s are 
expressed as: 

         mKmPmEmQmE sss  .                                              (19) 

Here, E(m) and K(m) are complete elliptic integrals of the first and second kind, and Qs(m), 
Ps(m) are polynomials. In previous work [15], [16], the method for high-accuracy 
calculations of complete elliptic integrals of the first and second kind is developed using the 
well-known arithmetic-geometric mean (AGM), Gauss’ technique [17]. 

The analogical procedure is elaborated here for evaluating the integral  00 ,,, zzIq  . 

Here the relation for eqn (19) is also obtained, but with other polynomials Qs(m) and Ps(m). 
After calculating the inner integrals  00 ,,, zzIu   and  00 ,,, zzIq   in eqn (13), the 

boundary element method (BEM) with constant approximation of densities was applied to 
obtain unknown functions using a special approach, to calculate the outer integrals with 
logarithmical singularities [2], [5]. 

3  NUMERICAL SIMULATIONS 

3.1  Benchmark test 

For testifying the proposed numerical algorithm with qualified evaluation of inner integrals 
the liquid frequencies in the rigid cylindrical shell are compared with R. Ibrahim’s 
analytical solutions (eqn 20), as seen in previously published work [18]: 

,..2,1,tanh
2













k

R

H

Rg k
kk ; 






 







 







   H

R
z

R
r

R
J kkk

lk
1coshcosh .

           
(20) 

Here, R is the shell radius, H is its height, k  values are roots of the equation   0 xJl , the 

 xJl  is a Bessel function of the first kind; and k, k are the frequencies and modes of 

liquid sloshing within the rigid cylindrical shell. The numerical solutions are obtained by 
using the BEM as it was described beforehand, as well as by the method developed in 
reference [8]. 

Suppose that R = 1 m and H = 1 m. Table 1 provides the numerical values of the natural 
frequencies of liquid sloshing for l = 1, obtained by the proposed numerical method, the 
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method developed in reference [8], and the analytical solution for eqn (20). Thus, Table 1 
results testify to the convergence of our proposed BEM and its effectiveness. Here, in both 
numerical methods, we considered equal numbers of N = 150 for the boundary elements 
along . 

Table 1:    Slosh frequency parameters gn /2  of a fluid-filled rigid cylindrical shell, using 

different solving methods. 

Method n = 1 n = 2 n = 3 n = 4 n = 5 

[8] 1.6590 5.3301 8.5385 11.7071 14.8684 

Proposed BEM 1.6573 5.3293 8.5363 11.7060 14.8635 

Analytical solution (20) 1.6573 5.3293 8.5363 11.7060 14.8635 

 
The results obtained by both numerical methods were very close to the analytical ones. 

It should be noted that the results obtained by our new variant of BEM, with qualified 
evaluation of inner integrals, are essentially more accurate. 

3.2  Vibrations of elastic fluid-filled truncated conical shells 

We also provide estimation of natural modes and frequencies of an elastic truncated cone 
coupled with liquid sloshing. In Table 2, an elastic conical tank with clamped-free edges 
was considered, supposing that R = 0.5 m, H = 1 m and  = /4. Results obtained were for 

seven wave numbers, 0.6l   with 1.4k  . The frequencies of liquid sloshing, vibrations 
of empty and liquid-filled tanks are obtained. The results of numerical simulations are 
given in Table 2. 

For these numerical simulations, three basic systems were built, similar to previous 
studies [6]. The elastic empty shell modes are first. The displacements in the coupled 
problem are considered as the linear combinations of the empty elastic shell natural modes. 
Free vibration modes and frequencies for the liquid-filled elastic shell, without gravity 
effects, are defined at the second step. These are the second system of basic functions. The 
third system consists of sloshing modes, including gravity effects. The numerical 
simulation is accomplished using the developed one-dimensional BEM with qualified 
evaluation of the inner integrals. 

Hereinafter, in numerical simulation, the shell thickness and Poisson’s ratio were taken 
as h/R = 0.01 and  = 0.3, Young’s modulus was E = 2.11 × 106 MPa, and densities for 
shells and liquid are s = 8,000 kg/m3 and l = 1,000 kg/m3, respectively. 

In this case, the mutual influence of sloshing and elastic shell vibrations is negligible. 
The separation of frequency spectra for the liquid-filled elastic cone tank and the liquid 
sloshing within the rigid tank was observed. 

The conclusions following numerical simulations are interesting: First, the lowest 
frequency here belongs to the axisymmetric mode with dominant bottom vibrations. The 
axisymmetric modes for the bottom and the walls of the truncated conical tanks are 
demonstrated in Figs 2 and 3. 
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Table 2:  Frequencies in elastic truncated conical shell, in Hertz (Hz). 

n m 
Frequencies 

Sloshing Empty Fluid-filled 

0 

1 5.836 101.07 41.67
2 8.300 393.49 214.06
3 9.997 559.52 257.91
4 11.443 675.88 471.43

1 

1 3.659 210.34 113.56
2 7.001 327.90 126.64
3 8.979 601.83 425.00
4 10.577 649.99 438.22

2 

1 4.819 193.05 96.57
2 7.897 345.07 224.03
3 9.729 605.43 346.52
4 11.236 764.39 500.66

3 

1 5.707 128.30 64.217
2 8.661 504.88 281.69
3 10.397 519.84 327.95
4 11.837 723.61 474.97

4 

1 6.460 100.89 58.200
2 9.340 436.93 467.25
3 11.005 689.26 265.86
4 12.394 693.20 506.67

5 

1 7.1288 101.85 56.908
2 9.9581 385.15 232.28
3 11.568 671.56 452.47
4 12.915 897.75 686.67

6 

1 7.736 123.20 78.861
2 10.529 368.32 241.18
3 12.094 663.03 458.88
4 13.406 952.83 688.34

 
 

 

Figure 2:  Axisymmetric modes of tank bottom vibrations. 
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Figure 3:  Axisymmetric modes of tank wall vibrations. 

Hereinafter, the numbers 1, 2, 3 and 4 correspond to the vibration numbers for k with 
l = 0. Figs 2 and 3 demonstrate different behaviour for the bottom and for the shell walls’ 
vibrations. One can observe that in this case, the bottom and wall vibrations do not affect 
each other. Note that the frequency  = 41.67 Hz is the lowest one for vibrations of the 
liquid-filled elastic conical shell with elastic bottom. It corresponds to l = 0 and k = 1. If 
conical shells with rigid bottoms are considered, then the lowest frequency occurs at l = 4 
and k = 1 for the empty shell; and l = 5 and k = 1 for the fluid-filled shell. Fig. 4 
demonstrates that modes corresponding to the bottom vibrations are l = 5 and k = 1. 
 

 

Figure 4:  Modes of tank bottom vibrations given l = 5 and k = 1. 

Fig. 5 demonstrates the wall vibration modes for l = 5 and k = 1. The lowest frequency 
here responds to the wall vibrations. Thus, if the truncated elastic conical tank with a rigid 
bottom is considered, then the lowest frequency does not correspond to the axisymmetric 
mode. 

Analysis of Figs 2–5 should lead to an understanding that at low wave numbers, the 
dominant modes of truncated elastic cone vibrations correspond to its bottom, yet with 
increasing the number of nodal diameters, the tank’s wall vibrations become dominant. 

Fig. 6 shows the modes of lowest frequencies for liquid sloshing in the rigid tank (left); 
plus for the elastic conical tank with the rigid bottom (right). 

If the bottom deformation is neglected, then the lowest frequency of elastic fluid-filled 
shell would be missed. 

The frequencies () near 100 Hz were considered as being most dangerous for empty 
shells. Our results, provided in Table 2, testify to it. For example, a  = 101.07 Hz 
corresponds to l = 0 and k = 1; and a  = 100.89 Hz corresponds to an l = 4 and k = 1; plus 
a  = 101.86 Hz corresponds to l = 5 and k = 1. 
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Figure 5:  Modes of tank wall vibrations for l = 5 and k = 1. 

 

Figure 6:  Modes of lowest frequencies. 

It is also important to note that the lowest frequencies of the empty and liquid-filled 
tanks corresponded to different circumferential wave numbers. 

The frequencies of liquid-filled tank vibrations are drastically different from the 
frequencies of empty tanks; however, with increasing the wave number, this difference 
became gradually smaller. 

4  CONCLUSIONS 
We propose a new variant of BEM that solves the Laplace equation with axisymmetric 
calculation domain, giving periodic functions under boundary conditions. The shape of the 
calculation domain allowed us to reduce surface integral equations down to one-
dimensional ones. We introduced special elliptic integrals and developed an advanced 
numerical method for their evaluation. We analysed the natural vibrations for truncated 
elastic shell interactions with internal liquid sloshing/rotating within shell forms. Coupled 
one-dimensional finite and boundary element methods were used. The vibration analysis 
included several steps. The numerical simulation was accomplished using the developed 
one-dimensional BEM with qualified evaluation of inner integrals. The developed method 
essentially reduces computer time for numerical analysis and produces new qualitative 

42  Boundary Elements and other Mesh Reduction Methods XLIV

 
 www.witpress.com, ISSN 1743-3533 (on-line) 
WIT Transactions on Engineering Sciences, Vol 131, © 2021 WIT Press



possibilities in advanced computational modelling of the dynamic characteristics of liquid-
filled elastic shell structures. We demonstrated the differences in dynamic characteristics 
between elastic truncated shells with rigid and elastic bottoms. Our results can be 
considered as a basis for further research in the dynamic behaviour of structures subjected 
to intensive loading and fluid interactions. It should be noted that our interpretation and 
understanding of the dynamic processes found in elastic shell structures subjected to the 
actions of flowing fluids is far from completion and requires additional research. 
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