
ACCURACY ANALYSIS OF THE FAST MULTIPOLE 
METHOD FOR THREE-DIMENSIONAL BOUNDARY 

VALUE PROBLEMS BASED ON LAPLACE’S EQUATION 

ANDRÉ BUCHAU 
Institute of Smart Sensors, University of Stuttgart, Germany 

ABSTRACT 
The fast multipole method (FMM) is an established matrix compression technique for a fast and 
efficient solution of complex three-dimensional boundary value problems based on Laplace’s equation 
using the boundary element method (BEM). Furthermore, the FMM significantly accelerates the post-
processing of the solved BEM problem. The foundation of the FMM is a series expansion of Green’s 
function into spherical harmonics. Both the accuracy and computational costs are controlled by the 
order of this truncated series expansion. The FMM has been successfully applied to a plethora of 
engineering problems from multiple disciplines and its overall accuracy has been impressively proved. 
The basic numerical properties of the truncated series expansions of the FMM have been already 
investigated in detail but for point sources only. Here, I revisit the fundamentals of the FMM and 
analyze the relevant properties of spherical harmonics, the error of the truncated series expansions of 
the FMM, the influence of coordinate transformations of these series expansions and potential 
discontinuities of computed field values at the interfaces between the cubes of the hierarchical octree 
scheme of the FMM. In contrast to earlier publications, I analyze and visualize the field values of 
distributed single-layer sources instead of point sources inside the total computational domain of an 
octree cube with the help of three-dimensional plots of their field values and their related approximation 
errors. For these studies, I put a focus on the accuracy of the reversed FMM algorithm, which is very 
well suited for meshfree post-processing and which is introduced here in detail for the first time. 
Keywords:  Laplace’s equation, boundary element method, fast multipole method, spherical harmonics, 
post-processing. 

1  INTRODUCTION 
The fast multipole method (FMM) has been originally developed by Greengard and Rokhlin 
[1] to compute particle interactions efficiently. They have shown impressively that the 
computational costs for a system of 𝑁 regularly distributed particles are reduced from 𝑂ሺ𝑁ଶሻ 

to 𝑂ሺ𝑁 log 𝑁ሻ, if the well-known series expansion of 
ଵ

ସ஠|𝒓ି𝒓ᇲ|
 into spherical harmonics is 

applied in combination with a hierarchical octree scheme. They have applied a high order of 
the truncated series expansions to get accurate results due to the singular fields of the 
particles. 

Nabors and White [2] have extended this approach to the solution of electrostatic field 
problems using an indirect formulation of the boundary element method (BEM). Later, an 
adaptive scheme for generalized BEM computations based on higher-order boundary 
elements and the Galerkin method has been introduced for electrostatic field problems [3]. 
In [4] it has been shown that the FMM competes very well with the adaptive cross 
approximation technique (ACA) and is furthermore applicable for a coupling of the BEM 
with the finite element method (FEM). In all these mentioned applications, the error caused 
by the FMM has been in the range of the total error of the resulting linear equation system 
and is barely visible in integral values like the capacitance coefficients of a multiconductor 
system [2]. 
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Remarkably, despite the success of the FMM, a detailed analysis of the approximation 
error of the series expansions in the context of typical BEM integrals cannot be found in the 
literature. Hence, I present here a study of the approximation error of single-layer integrals 
as they occur in the context of indirect BEM formulations or as a part of the integrals of direct 
BEM formulations [5]. First, I revisit the properties of the used spherical harmonics and the 
multipole and local expansions of a single-layer source at a single boundary element. In 
contrast to particles, the scalar potential 𝑢 stays finite at the boundary element. My study 
includes evaluations of the potential or its gradient, which is the field strength, in the related 
octree cube. Particularly, I put a focus on the interfaces between two cubes to investigate 
potential discontinuities of normally continuous field values caused by the truncated FMM 
series expansions. This point is especially important for precise meshfree post-processing as 
it is required for instance for the design of magnets for nuclear magnetic resonance (NMR) 
applications [6]. The reversed FMM algorithm, which was firstly applied in [7], is the basis 
for the following error analysis of the FMM transformations. There, efficient transformation 
operators as presented in [8] are employed for accurate and fast transformations of the 
multipole and local coefficients. Finally, I draw my conclusions based on three-dimensional 
plots of the fields and their approximation errors to first show the numerical properties of the 
multipole and local expansions but second to support a reasonable use of the FMM in the 
context of the BEM or related applications. 

2  MULTIPOLE AND LOCAL EXPANSIONS 
The starting point of my study is Laplace’s equation 
 

∆𝑢 ൌ 0,                                                                  (1) 
 
which is the fundamental partial differential equation of an electrostatic field problem based 
on the scalar electric potential 𝑢. The related Green’s function for three-dimensional open 
space field problems is then 
 

𝐺ሺ𝒓, 𝒓ᇱሻ ൌ
ଵ

ସ஠

ଵ

|𝒓ି𝒓ᇲ|
.                                                          (2) 

 
     The point 𝒓ᇱ describes a point on the boundary elements or the single-layer sources, 
respectively. The field values are computed at the evaluation point 𝒓. 

The basis of the FMM is the series expansion of eqn (2) into spherical harmonics 𝑌௡
௠ [9] 

 

ଵ

ସ஠

ଵ

|𝒓ି𝒓ᇲ|
ൌ ቐ

ଵ

ସ஠
∑ ∑ ௥೙

௥ᇲ೙శభ 𝑌௡
௠ሺ𝜃, 𝜙ሻ𝑌௡

ି௠ሺ𝜃ᇱ, 𝜙ᇱሻ௡
௠ୀି௡

ஶ
௡ୀ଴ 𝑟 ൏ 𝑟ᇱ

ଵ

ସ஠
∑ ∑ ௥ᇲ೙

௥೙శభ 𝑌௡
௠ሺ𝜃, 𝜙ሻ𝑌௡

ି௠ሺ𝜃ᇱ, 𝜙ᇱሻ௡
௠ୀି௡

ஶ
௡ୀ଴ 𝑟ᇱ ൏ 𝑟

.                   (3) 

 
𝑟, 𝜃 and 𝜙 are the spherical coordinates of 𝒓 and 𝑟ᇱ, 𝜃ᇱ and 𝜙ᇱ are the spherical coordinates 
of 𝒓ᇱ, respectively. Note, that the imaginary part of the double sum in eqn (3) vanishes. 

2.1  Normalized spherical harmonics 

Depending on the intended application of spherical harmonics, different normalization 
approaches are used. Here, I use the normalization which has been introduced in [1], since it 
is very advantageous in the context of the FMM regarding computational costs 
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𝑌௡
௠ሺ𝜃, 𝜙ሻ ൌ ට

ሺ௡ି|௠|ሻ!

ሺ௡ା|௠|ሻ!
𝑃௡

|௠|ሺcos 𝜃ሻe୨௠థ.                                           (4) 

 

𝑛 is the degree of the spherical harmonics and 𝑚 is its order with |𝑚| ൑ 𝑛. 𝑃௡
௠ሺcos 𝜃ሻ are 

the associated Legendre functions and are computed using recurrence relations [9], [10]. 
The value of 𝑌଴

଴ሺ𝜃, 𝜙ሻ is constantly one. With increasing degree 𝑛, the number of lobes 
in a three-dimensional plot of 𝑌௡

௠ሺ𝜃, 𝜙ሻ increases, too. The direction of these lobes is 
adjusted by the order 𝑚. This is exemplarily depicted in Fig. 1 for the real part of 𝑌ଵ

ଵሺ𝜃, 𝜙ሻ 
and the imaginary part of 𝑌ସ

ଶሺ𝜃, 𝜙ሻ. The values of 𝑌௡
௠ሺ𝜃, 𝜙ሻ are additionally weighted with 

the factor 𝑟௡ in the series expansions in eqn (3). That means higher order spherical harmonics 
are especially relevant for large distances to the origin of the coordinate system (Fig. 2). 
 

   

Figure 1:  The real part of 𝑌ଵ
ଵሺ𝜃, 𝜙ሻ and the imaginary part of 𝑌ସ

ଶሺ𝜃, 𝜙ሻ. 

 

Figure 2:  Values of the weighting factor 𝑟௡ within the normalized interval of 0 ൑ 𝑟 ൑ 1. 

2.2  Multipole expansion 

The truncated multipole expansion of order 𝐿 is obtained from eqn (3) for the case 𝑟ᇱ ൏ 𝑟 
 

𝑢ሺ𝑟, 𝜃, 𝜙ሻ ൌ
ଵ

ସ஠ఢబ
∑ ∑ ௒೙

೘ሺఏ,థሻ

௥೙శభ 𝑀௡
௠௡

௠ୀି௡
௅
௡ୀ଴ .                                             (5) 

 

𝜖଴ is the electric permittivity of vacuum and 𝑢 the potential of an electrostatic field problem. 
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The single-layer charge density 𝜎 on boundary elements inside a spherical domain around 
the origin of the coordinate system is summarized by the complex multipole coefficients 
 

𝑀௡
௠ ൌ ׬ 𝜎ሺ𝑟, 𝜃, 𝜙ሻ𝑟ᇱ௡𝑌௡

ି௠ሺ𝜃ᇱ, 𝜙ᇱሻd𝐴ᇱ
஺

.                                           (6) 
 

The 𝑀௡
௠ correspond to point sources of degree 𝑛 at the origin and are equivalent to a 

monopole, a dipole, a quadrupole and multipoles of higher degree [11]. A discussion of the 
accuracy of eqn (5) follows in Section 3 in the context of the reversed FMM algorithm. 

2.3  Local expansion 

The local expansion is the evaluation of eqn (3) inside a domain around the origin of a 
spherical coordinate system, which is for the case 𝑟 ൏ 𝑟ᇱ 
 

𝑢ሺ𝑟, 𝜃, 𝜙ሻ ൌ
ଵ

ସ஠ఢబ
∑ ∑ 𝑟௡𝑌௡

௠ሺ𝜃, 𝜙ሻ𝐿௡
௠௡

௠ୀି௡
௅
௡ୀ଴                                         (7) 

 
with the complex local coefficients 
 

𝐿௡
௠ ൌ ׬ 𝜎ሺ𝑟, 𝜃, 𝜙ሻ ௒೙

ష೘൫ఏᇲ,థᇲ൯

௥ᇲ೙శభ d𝐴ᇱ
஺

.                                                   (8) 

 
The 𝐿௡

௠ are not computed directly using eqn (8) but with transformations of the FMM 
algorithm indirectly with the help of the 𝑀௡

௠. 
Eqn (7) corresponds to a Taylor series expansion of the potential 𝑢 at the origin of the 

spherical coordinate system. The degree 𝑛 ൌ 0 term represented by 𝐿଴
଴  is equivalent to the 

potential at the origin and results in a constant potential inside the complete octree cube with 
its center at the origin of the spherical coordinate system. The three 𝑛 ൌ 1 terms add linear 
terms to the function of 𝑢 in the considered domain. The value and sign of 𝐿ଵ

଴ controls the 
linear dependency of 𝑢 in the 𝑧-direction, the real part of 𝐿ଵ

ଵ  controls the linear dependency 
on the 𝑥-coordinate and the imaginary part of 𝐿ଵ

ଵ  adds a linear term dependent on the 𝑦-
coordinate (Fig. 3). With the help of the higher order terms 𝑛 ൒ 2, the function 𝑢ሺ𝑥, 𝑦, 𝑧ሻ 
inside the valid domain is further shaped and adapted to the original function of 𝑢. In Fig. 4 
the results of the imaginary part of 𝐿ଷ

ଷ  are shown. There, the potential 𝑢 in the FMM cube 
depends only on the 𝑥- and 𝑦-coordinates and is independent of the 𝑧-coordinate. 

 

    

Figure 3:  Potential 𝑢 in a horizontal slice and its isosurfaces controlled by Imሺ𝐿ଵ
ଵ ሻ. 
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Figure 4:  Potential 𝑢 in a horizontal slice and its isosurfaces controlled by Imሺ𝐿ଷ
ଷ ሻ. 

It is worth mentioning that the product of 𝑟௡𝑌௡
௠ሺ𝜃, 𝜙ሻ results in classical polynomial 

functions in Cartesian coordinates and is therefore well suited for an accurate approximation 
of scalar potentials 𝑢ሺ𝑥, 𝑦, 𝑧ሻ, if there are no sources inside the considered evaluation domain. 

3  REVERSED FMM ALGORITHM 
The reversed FMM algorithm is perfect for post-processing and has been already successfully 
applied to the meshfree computation of field lines [7]. There, the idea that an FMM algorithm 
in reversed order is advantageous has been introduced in principle. Here, I present the 
reversed FMM algorithm in detail for the first time and analyze its numerical properties 
concerning the accuracy of its related series expansions and transformation operations. 

3.1  Post-processing based on the reversed FMM algorithm 

It is obvious to apply the FMM both to compress the matrix of the linear system of equations 
of the BEM and to improve its post-processing overall efficiency. However, there is a major 
difference between matrix compression and meshfree post-processing. In the first case, the 
position of all sources which are represented by the boundary elements is fixed and the field 
values are computed at fixed points, too [3]. Whereas an important property of meshfree post-
processing is that only the sources and their positions are known in advance and the 
evaluation points are determined during the post-processing [12]. That means the structure 
of the underlying octree scheme is changing during the post-processing and the focus moves 
there especially to an efficient evaluation of eqn (7) including a suitable computation of the 
𝐿௡

௠. 
All steps of the reversed FMM algorithm are summarized schematically in Fig. 5. Each 

step has an equivalent step in the original FMM algorithm [1] but I reversed the order of the 
steps and added conditions for the execution of a step to accelerate meshfree post-processing. 

The reversed FMM algorithm is initialized with an octree that includes all boundary 
elements as sources. Then, in step 1 the current evaluation point 𝒓௘௣, e.g. the next point of a 
field line, is added to the octree and its related cube 𝐶௘௣ is created if necessary. 𝐶௘௣ is identical 
to the cube in which the local expansion of step 2 must be evaluated. To compute field values 
based on eqn (7), the 𝐿௡

௠ of 𝐶௘௣ are needed. If the 𝐿௡
௠ have been already computed within a 

previous step, e.g. for the preceding point of the field line, these 𝐿௡
௠ are taken in step 3 and 

are evaluated in step 4 using eqn (7) or the derivative of eqn (7) with respect to the global 
Cartesian coordinates to determine flux densities, e.g. the electric field 𝑬 ൌ െ∇𝑢. 
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Figure 5:  Computational steps of the reversed FMM algorithm. 

Step 5 is only executed if the 𝐿௡
௠ have not been computed within an earlier computation. 

The 𝐿௡
௠ are computed from the related coefficients of the parent cube 𝐶௘௣,௣ of 𝐶௘௣ at the next 

coarser level of the octree (level+). This is equivalent to step 3 which now redirects to step 2 
but using 𝐶௘௣,௣ instead of 𝐶௘௣. If this loop ends in step 5, the loop is repeated if necessary. 
Finally, step 3 is reached and the 𝐿ത௡

௠ of 𝐶௘௣,௣ are transformed into 𝐿௡
௠ of 𝐶௘௣ 

 
𝐿௡

௠ ൌ ∑ 𝐿ത௡
௠𝑇௟ଶ௟ሺ𝑛, 𝑚, 𝑘ሻ௅

௞ୀ௡                                                         (9) 
 
after a suitable rotation of the coordinate system to accelerate the computations [8]. The 
transformation coefficients 𝑇௟ଶ௟ሺ𝑛, 𝑚, 𝑘ሻ are computed once for each possible direction and 
modified for each octree level 
 

𝑇௟ଶ௟ሺ𝑛, 𝑚, 𝑘ሻ ൌ 𝑇௟ଶ௟
ௗ௜௥௘௖௧௜௢௡𝑇௟ଶ௟

௥௢௢௧𝑇௟ଶ௟
௟௘௩௘௟.                                            (10) 

 
Additionally, the multipole coefficients 𝑀௡

௠ of far-field cubes at the same level are 
determined (step 6) and added to the local coefficients of 𝐶௘௣ 
 

𝐿௡
௠ ൌ ∑ 𝑀௞

௠𝑇௠ଶ௟ሺ𝑛, 𝑚, 𝑘ሻ௅
௞ୀ௠ .                                                 (11) 

 

step 1:
add 𝒓௘௣

𝑀௡
௠? step 3:

get 𝐿௡
௠ 

step 4: 
compute 𝑢൫𝒓௘௣൯ 

step 5: 
compute 𝐿௡

௠ 

step 3:
get 𝐿௡

௠ 

le
ve

l +
 

step 2: 
get cube 𝐿௡

௠ 

step 6: 
get 𝑀௡

௠ 

level
step 7: 

get cube 𝑀௡
௠ 

step 8: 
compute 𝑀௡

௠ 

le
ve

l -
 

𝐿௡
௠? step 6:

get 𝑀௡
௠ 

step 6:
get 𝑀௡

௠ 
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Here, a rotation of the coordinate system is done first, too [8]. 
In step 7, cubes at the same octree level as 𝐶௘௣ must be found which are far away from 

𝐶௘௣ to ensure the validity of the series expansions and which are not in a region that has been 
already considered in the far-field at a coarser octree level. For each relevant far-field cube 
𝐶௙௙ it is checked whether the 𝑀௡

௠ have been computed (continue with step 6 and step 5) or 
must be determined in the current step (step 8). 

The goal of step 8 is to replace sources on boundary elements with sets of 𝑀௡
௠. If 𝐶௙௙ has 

child cubes at finer octree levels, the 𝑀ഥ௡
௠ of the child cube are transformed using again a 

rotation of the coordinate system to accelerate the computations 
 

𝑀௡
௠ ൌ ∑ 𝑀ഥ௡ି௞

௠ 𝑇௠ଶ௠ሺ𝑛, 𝑚, 𝑘ሻ௡
௞ୀ଴ .                                                (12) 

 

At the finest octree level, eqn (6) is applied to compute the 𝑀௡
௠ directly from the sources 

on the boundary elements. 
In the first run, the reversed FMM algorithm has computational costs compared to the 

classical FMM algorithm using fast transformations of series expansions based on a rotation 
of the coordinate system [8]. However, during the post-processing, the FMM algorithm is 
executed multiple times, e.g. for each point of a field line. Since the reversed FMM algorithm 
starts at the evaluation point 𝒓௘௣, steps 1 to 4 are executed in most cases, only. In some cases, 
step 5 is additionally required. Steps 6 and 7 are needed only during the first run of the 
reversed FMM algorithm. Hence, the computational costs are in total significantly reduced 
by my reversed FMM algorithm compared to the classical FMM algorithm for post-
processing. 

3.2  Numerical properties of the local expansion 

As I have shown in Section 2.3, the local expansion is very well suited to approximate scalar 
functions within a limited domain using appropriately chosen complex series coefficients 𝐿௡

௠. 
Here, I apply the truncated local expansion (7) to the test configuration depicted in Fig. 6. A 
linear triangular Lagrange boundary element is used exemplarily to describe single-layer 
sources, here a constant surface charge density of 10 nC mଶ⁄ . The cube structure of the 
applied octree scheme is shown by the black lines. The part of the boundary element, which 
is within its assigned cube, is highlighted using green color and its parts, which are outside 
its cube, are marked with red color. So, I study a typical situation where the octree scheme 
does not perfectly fit the boundary element mesh of the problem. The field of the source 
element is evaluated at the surface and inside the two cubes, for which in Fig. 6 the scalar 
potential is shown using the depicted color scheme. Since a linear problem is studied, 
geometrical dimensions do not matter and a normalized edge length of the depicted cubes of 
1 m is used. 

As above shown, the FMM algorithm or the reversed FMM algorithm is complex, and 
the approximation error of truncated series expansions and transformations is composed of 
errors of many different numerical operations. Hence, the total error of the FMM is difficult 
to specify and measure. 

Here, I start the accuracy analysis of the FMM with studies of the accuracy of eqn (7). To 
exclude all errors of the reversed FMM algorithm, I compute the 𝐿௡

௠ directly by an evaluation 
of eqn (8) for the test element and with the origin of the local spherical coordinate systems 
of the cubes at the centers of the considered cubes. The potential 𝑢 and the electric field 𝑬 ൌ
െ∇𝑢 are evaluated in a slice going through the cubes and on the cubes’ surfaces. These results 
represent the accuracy limits of the FMM for a given order 𝐿.  
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Figure 6:  Test configuration for the presented accuracy analysis. 

The potential 𝑢 at the surfaces of the two cubes using eqns (7) and (8) with a truncated 
order 𝐿 ൌ 5 is depicted in Fig. 7. Furthermore, the relative error in comparison to the direct 
evaluation of the related BEM integral is shown. Even for a low order 𝐿, the color plot of 𝑢 
is smooth and a discontinuity of 𝑢 at the cubes’ interface is barely visible. However, the 
analysis of the related relative error leads to the conclusion that the discontinuity of 𝑢 is not 
negligible. This is clearly illustrated by the plot of 𝑢 in a slice in Fig. 8. 

Of course, the relative error decreases if 𝐿 or the distance between the element and the 
considered cubes is increased. That means it is in principle possible to find a good 
compromise between accuracy and computational costs for a reasonable approximation of 𝑢. 
Then, the approximation error is in the range of accuracy of the BEM and discontinuities of 
𝑢 at the cubes’ interfaces are in practice negligible.  
 

    

Figure 7:    Potential 𝑢 computed at the cubes’ surfaces using eqns (7) and (8) with 𝐿 ൌ 5 
and its relative error in comparison to direct evaluation of the BEM integral. 

10  Boundary Elements and other Mesh Reduction Methods XLIV

 
 www.witpress.com, ISSN 1743-3533 (on-line) 
WIT Transactions on Engineering Sciences, Vol 131, © 2021 WIT Press



    

Figure 8:    Potential 𝑢 computed at a horizontal slice using eqns (7) and (8) with 𝐿 ൌ 5 and 
its relative error in comparison to direct evaluation of the BEM integral. 

In most applications, not only the potential 𝑢 but also the electric field 𝑬 ൌ െ∇𝑢 is of 
large interest for an engineer. Hence, the norm 𝐸 ൌ ‖𝑬‖ and its relative error in comparison 
to the direct evaluation of the related BEM integrals is depicted in Fig. 9 at a horizontal slice 
through the considered cubes for an order 𝐿 ൌ 5. The plot of 𝐸 shows a significant 
discontinuity and the relative error is much larger than the one of 𝑢. That means for precise 
field computations based on the derivative of the potential, a high order of the series 
expansions is required. Especially a visible discontinuity at the cubes’ interfaces should be 
avoided. 

   

Figure 9:    Electric field 𝐸 computed at a horizontal slice using the gradient of eqns (7) and 
(8) with 𝐿 ൌ 5 and its relative error in comparison to direct evaluation of the 
BEM integral. 

I have repeated the computations of 𝑢 and 𝐸 with an order of 𝐿 ൌ 10 which gives in total 
satisfactory results for most applications. The relative error of both values is depicted in Fig. 
10. For the studied configuration, the approximation error of 𝑢 is negligibly small and even 
the approximation error of 𝐸 has no relevant effect on the total results. Note, the 
approximation error can be larger if the source element has larger parts outside the related 
cube. Such situations often appear in the context of highly adaptive meshes. 
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Figure 10:    The relative error of 𝑢 and 𝐸 at a horizontal slice using eqn (7) and its gradient 
with 𝐿 ൌ 10 in comparison to direct evaluation of the BEM integral. 

In total, the local expansion results in precisely computed field values if the order of the 
truncated series expansion is carefully chosen. Discontinuities at cubes’ interfaces are then 
small enough not to be relevant in practice. 

3.3  Numerical properties of the local-to-local transformation 

In the preceding section, I have shown the potential and the superb properties of the local 
expansion for the fast multipole method and related applications. Here, I put the focus on the 
local-to-local transformation (9) and its accuracy. Particularly, I want to answer the questions 
of how this transformation influences the total accuracy of the FMM and which parameters 
can be used to improve the accuracy of the FMM. 

In this study, I compute the local coefficients 𝐿෨௡
௠ of the parent cube of the two considered 

cubes directly using eqn (8). The relative error of the potential evaluated using eqn (7) with 
𝐿෨௡

௠ in comparison to the direct computation of the boundary integral is depicted in Fig. 11 on 
the left side. The order of the truncated series expansion is 𝐿 ൌ 10. It is worth to mention, 
that the error at points that are close to the boundary element is relatively large. The reason 
is that in this test configuration the distance between the considered parent cube and the cube 
with the boundary element is smaller than usual in the FMM. At points in typical distance to 
the source element, the error is much smaller, here the points near the backside of the two 
considered cubes. That means in practice, the distance between the cubes which are used for 
the following multipole-to-local transformation and the part of the elements which sticks out 
of the related cube are the most important parameters to adjust the total accuracy of the FMM. 
The relative error of the potential using the local coefficients of the considered cubes after 
the local-to-local transformation is shown in Fig. 11 on the right side. This error is nearly 
identical to the previous one. A comparison of the potential values in both cases underlines 
this observation. 

My conclusions of this study are that the local-to-local transformation has almost no 
influence on the accuracy of the FMM and the accuracy of the truncated local expansion is 
set by the parameters of the parent cube and not by the considered cube. The reason is that 
the potential inside the parent cube is described with the help of its local expansion and this 
series expansion is used to determine the coefficients of the local expansion of the child 
cubes. So to speak the transformed local expansion of the child cube is nothing else than the 
local expansion of the parent cube but with the shifted origin of the local coordinate system. 
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Figure 11:    Relative error of the potential of the local expansion of the parent cube (left side) 
and the transformed local expansions (right side) both for 𝐿 ൌ 10. 

3.4  Numerical properties of the multipole expansion 

The computation of the multipole coefficients using eqn (6) is the essential step of the FMM 
to convert the continuous charge distribution on the elements into multipoles up to the defined 
order 𝐿. The accuracy of the potential computed based on eqn (5) depends both on the number 
of multipoles and the distance between the region of the original charges and the evaluation 
point 𝒓. Within the FMM algorithm, the multipole coefficients of a cube are transformed 
using the multipole-to-multipole expansion into the multipole coefficients of the related 
parent cube. There, the same order of multipoles is available. That means the accuracy of the 
multipole expansion of the parent cube is comparable to the accuracy of the multipole 
expansion of its child cube. Analog to the local-to-local expansion the size of the domain of 
the sources is changed during this transformation and the overall accuracy is decreased. 

I test this situation using the setup of Fig. 6. First, I compute the multipole expansion of 
the cube of the boundary element and evaluate the potential inside the two evaluation cubes 
(Fig. 12, left side). Then, I compute the multipole expansion of the parent cube both directly 
using eqn (6) and via the multipole-to-multipole transformation. Again, the shift of the 
coordinate system does not influence the accuracy. However, the enlarged size of the source 
domain lowers the accuracy of the potential close to the source domain (Fig. 12 right side). 

 

    

Figure 12:    Relative error of the multipole expansion of the element cube (left side) and the 
transformed multipole expansion of the parent cube (right side) both for 𝐿 ൌ 10. 
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3.5  Numerical properties of the multipole-to-local transformation 

In my last study, I compute the multipole coefficients 𝑀௡
௠ of the cube of the source element 

using eqn (6). Then, I apply the multipole-to-local transformation to get the local coefficients 
𝐿௡

௠ of the two evaluation cubes. The relative error of the potential 𝑢 using the related local 
expansions in the cubes is depicted for 𝐿 ൌ 5 and 𝐿 ൌ 10 in Fig. 13. A comparison with Figs 
8 and 10 shows that the multipole-to-local transformation has no visible influence on the 
accuracy of the FMM. 
 

    

Figure 13:    Relative error of the potential of the local expansion computed using the 
multipole-to-local transformation for 𝐿 ൌ 5 and 𝐿 ൌ 10. 

4  CONCLUSIONS 
In summary, my here presented studies on spherical harmonics and the fast multipole method 
deepen the understanding of both and therefore support more efficient use of these powerful 
tools. First, I have revisited spherical harmonics and particularly showed that spherical 
harmonics even for high degrees have coordinate dependencies in Cartesian coordinates 
although their input arguments are defined in spherical coordinates. Therefore, the 
coefficients of the related truncated series expansion enable accurate control of the intended 
approximation concerning dependencies in Cartesian coordinates. Then, I have discussed the 
reversed FMM algorithm in detail and theoretically showed its efficiency in the context of 
meshfree post-processing. Finally, I have demonstrated based on an example relevant to 
practice that with typical FMM parameters highly accurate computations are possible with 
the FMM. I could experimentally prove that the influence of transformations of multipole 
and local coefficients is negligible. The total accuracy of the FMM is mainly influenced by 
distances between the related octree cubes and the actual distance between boundary 
elements. 
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