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ABSTRACT 
This study presents a Cauchy-type problem of 3D elasticity for an elastic layer that can be bonded to 
an infinite base (half-space) made of dissimilar elastic material. The initial conditions are given on 
one side of the layer and both stress and displacement vectors are assumed to be known 
simultaneously. No conditions are specified on the other side. In the case of this side being fully 
bonded to the base, the stress and displacement vectors are continuous across the interface. This fact 
introduces certain relationships that have to be imposed on the initial conditions in order to obey 
continuity. We use these in order to detect a possible appearance of delamination of the interface. By 
using the double Fourier transform and the general solution of 3D elasticity in terms of harmonic 
functions, the initial value problem is reduced to a system of Fredholm integral equations  
of the first kind. Solutions of such systems are usually unstable; therefore, a numerical approach is 
suggested to overcome this difficulty by using the SVD regularisation. A possibility of delamination 
detection is discussed. 
Keywords:  layered elastic structures, interfacial cracks, inverse problems, integral equations, 
regularisation. 

1  INTRODUCTION 
This study continues the previous research for a 2D elastic strip [1] and generalises it for  
the 3D case of an elastic layer that can also be bonded to an elastic base (half-space) made 
of a different material. The main focus of this study is the development of mathematical 
methods capable of crack (delamination) detection on the interface between the layer  
and the base by using the strain/displacement measurements on the stress-free surface of  
the layer. Such a problem belongs to a wide class of incorrectly posed inverse problems  
of elasticity. It is known that the problem with overdetermined boundary conditions on a 
part of the boundary is incorrectly posed and can be unsolvable or possess unstable 
solutions. There are many publications regarding 2D inverse problems of plane elasticity 
but not so many for the 3D case. Standard formulation of the Cauchy initial value problem 
of plane elasticity usually assumes that the displacements vector u is known together with 
the stress vector p on a part of the boundary (usually it is stress-free, i.e. p=0) and no 
boundary conditions are specified on the rest of the boundary. Shvab [2] referred to such 
mathematical formulations as the (u,p) problem. Some other formulations, (see survey in 
Bonnet and Constantinescu [3]), can be reduced to the (u,p) problem. It is evident that  
in the case of plane elasticity the (u,p) problem can be routinely solved by a finite 
difference method applied to the Cauchy type system of two first-order differential 
equations of equilibrium, three linear Hook’s law equations and the three first order  
strain-displacement equations. In the case of 3D, the number of equations in the system 
increases but this would not present essential difference for the numerical analysis. 
However, such finite difference approaches require essential modifications due to 
numerical instability inherent for incorrectly posed formulations. Other possible numerical 
methods solving (u,p) problem in 2D are based on finite element or on boundary element 
techniques, which still necessitates the application of a regularisation technique to provide 
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stability of the solution. It is understood that the use of standard regularisation techniques 
(as Tikhonov’s or SVD regularisations) is capable to stabilize the solution (e.g. [4]–[7]), but 
for large systems their application is limited. Therefore, the development of alternative 
techniques for 3D case is necessary. Shwab [8] has shown that the Cauchy problem of 3D 
elasticity can be reduced to the Moisil and Theodoresco system [9], that provides 
generalisation of the integral Cauchy theorem from 2D into 3D and proved the uniqueness 
theorem for the solution of the problem. He also noticed that the problem is conditionally 
ill-posed as it can possess unstable solutions and investigated the accuracy of the solution 
by employing a boundary element technique. Galybin and Irša [10] have developed an 
FEM type technique for solving the Cauchy type problem for 3D harmonic functions 
complemented by the LSQR algorithm [11] for large systems. This allowed one to perform 
reconstruction of the contact stresses under a rigid circular punch applied to the boundary 
of elastic isotropic half-space by using the data of strain monitoring on the free surface of 
the half-space. This paper is aimed at the development of methods for solving the (u,p) 
problem for layered structures, in particular for the bi-material structure consisting of a 
coating bonded to a substrate. The main focus is to derive the integral relationships that can 
be useful for detection of delamination on the interface between the coating and the 
substrate. The work employs the method of spacious harmonic functions and the Fourier 
transform, which is widely used for solving direct boundary value problems for layered 
structures or bodies with planar cracks (e.g. [12], [13]).  

2  PROBLEM FORMULATION AND INTEGRAL EQUATIONS 

2.1  General solution in terms of harmonic functions 

We consider an elastic layer 0<x3<H with the moduli G (shear modulus) and 
(Muskhelishvili’s constant) that can be fully or partly bonded to the half-space x3<0 that 
has the moduli G0 and 0 as shown in Fig. 1. 
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Figure 1:  Geometry of the problem. 

     The boundary conditions are as follows: 
     BC1. The stress and displacement vectors are both known on the boundary x3=H; 
     BC2. The stress and displacement vectors are both continuous across the interface x3=0. 
     It is understood that this formulation is overdetermined if BC2 holds on the entire 
boundary x3=0. However, if a delamination occurs on a part of the interface, BC2 can be 
used for the sake of its detection by solving the Cauchy initial value problem, IVP, for the 
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layer with BC1. Therefore, we mainly focus on the Cauchy IVP and then discuss its 
application for the crack detection. In either case the aim is to construct a system of 
governing integral equations for the problem. Based on the formulas form Sih and 
Liebowitz [14] it has been shown [15], [16] that the following combination of the stress and 
displacement components can be expressed in terms of three spacious harmonic functions 
=(x1,x2,x3), =(x1,x2,x3) and  =(x1,x2,x3) as follows: 
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     Here, the symbols k stand for the derivative with respect to the k-th variable and since 

the functions ,  and  are harmonic we have used the following obvious relationship that 
is valid for any spacious harmonic function =(x1,x2,x3), 

  221133 . (7) 

     These equations are valid for the layer as well as for the half-space, but in the latter case 
the moduli G and should by replaced by G0 and 0 respectively. As evident from the 
system it can be decomposed into two independent groups of equations. Eqns (1) and (2) 
form the first group for the determination of the function  and four eqns (eqns (3)–(6)) 
form the second group for the determination of and  

2.2  Fourier transform of 3D harmonic functions 

We further use the double Fourier transform applied with respect to x1 and x2 in the form 
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     By applying eqn (8) to eqn (7), one finds 

 2
2

2
1)2,1(,0)3,2,1(ˆ)2,1(2)3,2,1(ˆ33 ssssxssssxss  . (9) 
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     The solution for )3,2,1(ˆ xss  and its normal derivative can be presented in the form 

 ))(,()2,1(2ˆ),()2,1(1ˆ)3,2,1(ˆ 321321 Hxssessxssessxss  , (10) 

 ))(,()2,1(2ˆ),()2,1(1ˆ
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
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for the layer Hx  30  and  

 321 ),()2,1(0ˆ)3,2,1(ˆ xssessxss  , (12) 

 321 ),()2,1()2,1(0ˆ)3,2,1(ˆ3
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for the half-space 03 x . 

     It is evident from eqns (12) and (13) that one cannot simultaneously impose two 
independent boundary conditions of the Dirichlet and Neumann type on the boundary of 
half-space as the problem becomes overspecified. This fact will be used further on for 
outlining a procedure for crack detection. 

2.3  Solution for the layer in Fourier space 

Let us consider the Cauchy IVP for the layer assuming that the boundary values of both  
the function and its normal derivatives are given on the boundary x3=H. It follows from 
eqns (10) and (11) that for Hx  30  
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     On the boundary x3=H 

 )2,1(2ˆ2
)2,1(

),2,1(ˆ3),2,1(ˆ ss
ss

Hss
Hss 




 , (16) 

 Hssess
ss

Hss
Hss ),()2,1(1ˆ2

)2,1(

),2,1(ˆ3),2,1(ˆ 21



 . (17) 

     On the interface x3=0 
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     It is evident from eqns (16) to (19) that the initial value problem for the harmonic 
function is readily found by known values of the function and its normal derivative at either 
end (x3=0 or x3=H). Thus, if the initial conditions are specified for x3=H, then  
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 
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 
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 (20) 

     It is evident, however, that the application of the inverse Fourier transform cannot be 
performed directly due to positive power of the first exponent in the right hand of eqn (20). 
This fact also indicates that the solution of the initial value problem for harmonic functions 
is unstable. 
     Let us find the relationships between the Fourier transforms on the boundaries. It 
follows from eqns (16) and (18) that 
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     From eqns (17) and (19), one finds 
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     These relationships are used further on for derivation of a system of integral equations.  

2.4  Reduction to integral equations 

Let us apply the inverse Fourier transform to eqns (21) and (22) and use the convolution 
theorem, which leads to the following system of integral equations of the Fredholm type of 
the first kind: 
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     Here, 
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whose reciprocal (1/) is a harmonic function and the following integrals [13] have been 
used taking into account that  is even with respect to all variables: 
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     Note that the integral in eqn (27) can be obtained by differentiation of eqn (26) with 
respect to x3.  
     The system eqns (23) and (24) is sought system of governing integral equations for the 
elastic layer. 

3  THE CASE OF NORMAL LOADING 

3.1  Solution for the layer 

Let us consider a special case of normal loading of the upper boundary (x3=H>0) of the 
layer, which is most interesting from practical point of view. Assume (x1,x2,x3)=0 and 
(x1,x2,x3)=0 in the system eqns (1)–(6) and introduce the following notations for known 
(measured) combinations of the displacements on x3=H: 
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     The first group of eqns (1) and (2) takes the form 
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     The second group is obtained by summing eqns (4) and (6) and by taking into account 
that the last two terms in eqn (5) can be neglected due to homogeneity of eqn (3) in the case 
of normal load. Therefore, we arrive at the problem of finding the sum of two unknown 
harmonic functions as follows: 
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     As soon as the sum + is determined one can derive the solutions for  and  and their 
normal derivatives by using eqns (3)–(5). By introducing the auxiliary harmonic function 
=-- and employing eqn (28), one obtains the following initial value problem: 

 )2,1()2,1(),2,1(3),2,1(),2,1( xxPxxSHxxxxUHxx  ,  (32) 

where the function P(x1,x2)=33(x1,x2,H)(2D)-1 is known exactly in contrast to the other 
terms on the right-hand sides of eqns (29) and (32) that contain measurement errors.  
     It is physically more realistic to measure displacements (strains) on the stress-free 
surfaces. In this case the dimensions of the zones of load application should be relatively 
small compared with the areas of displacement monitoring. This is valid in case of 
concentrated loads, which ensures that displacements are known over almost the whole 
boundary except for a finite number of points and thus all BC1 are satisfied. For simplicity 
it is assumed that all the loads acting on the surface x3=H are concentrated forces applied at 
different locations. For a normal concentrated load of intensity P0 applied at the origin the 
function P(x1,x2)=P0(x1,x2), where (x1,x2) is the Delta function. Its Fourier transform is 
constant P0. In order to keep the layer in equilibrium the resultant normal stress acting on 
the opposite side of the layer should have the same value P0 regardless of the its 
distribution over the plane x3=0. If the load on the opposite side is axisymmetric then all 
the conditions of global equilibrium are satisfied. This load can be selected, for example, as 
P0exp(-x1

2-x2
2)/, which emphasizes the fact that the stress and displacement vectors in the 

layer can possess polar symmetry. Let 0 be a harmonic function that presents the solution 
of the boundary value problem in normal stresses for the elastic layer. Then we can seek for 
a solution of the initial value problem with modified conditions eqn (32) as follows: 

 )2,1(0)2,1(),2,1(3),2,1(0)2,1(),2,1( xxSxxSHxxxxUxxUHxx  , (33) 

where U0 and S0 are the combinations of the displacement in eqn (28) that correspond to the 
solution of the BVP in terms of stresses. In the case of single concentrated load these 
functions possess polar symmetry, i.e. they depend only on the polar radius. In the case of 
several concentrated forces applied on x3=H one should use superposition of the particular 
solutions for every force and thus the polar symmetry does not take place anymore. We do 
not use symmetry further. 

System for 
In this case, we have to use eqn (29). Then the system eqns (23) and (24) becomes 
(  2,1 xx ): 
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     It follows from eqns (21) and (22) with the use of eqn (29) that this system is consistent 
only when the following relationship between )0,2,1( xx and )0,2,1(3 xx holds: 
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System for 
Substitution of eqn (33) into eqns (23)–(24) results in (  2,1 xx ): 
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











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
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






































 

 

.)2,1(2),2,1(

)0,,(3

),2,1(3
)0,,(

2

1

),,2,1(1)0,2,1(

)0,,(3
2

1
)0,2,1(

xxFdd
HxxHxx

H

HxxFdd
xx

xx

 (36) 

     Here the right-hand side of the system is as follows: 

 
 

 































 dd
Hxx

SS

Hxx

UUH
HxxF

),2,1(

),(0),(

),2,1(3
),(0),(

2

1
),2,1(1 , (37) 

  














 dd
xx

SS
xxUxxUxxF

)0,2,1(

),(0),(

2

1
)2,1(0)2,1()2,1(2 . (38) 

     As soon as the solution of eqn (36) is found one can find the total solution for the case  
of concentrated loads by summing  with 0. As a result, we determine the combination 

1)2(332211
 Guu and the normal displacement 3u . The normal stresses on the 

interface x3=0 is found by differentiating eqn (5) with respect to x3 and summing with  
eqn (6), which results in 

 )0,2,1(33)0,2,1(3)21(
2

)0,2,1(33 xxuxx
G

xx



. (39) 

3.2  Numerical approach 

Several standard methods can be employed for solving the system of integral eqn (36) 
taking into account that the second integral equation has regular kernels while the first one 
has a weak singularity and therefore the second term in its left hand side should be treated 
as a convergent improper integral.  
     Therefore, eqn (34) can be referred to as a system of Fredholm integral equations of  
the first kind, which usually possess unstable solutions. Alternatively, one can use the 
Trefftz-type approach that demonstrated satisfactory performance for solving unstable 
Fredholm equations when complemented by the SVD regularisation (see Galybin [15]  
for detail). 
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     Let us seek the function  and its derivative with respect to x3 (that is also harmonic) as 
two linear combinations of the radial basis functions 1/ with the nodes (k, k, k) lying 
outside the layer 

 





N

k kxkxkx
ka

xxx

1
)3,2,1(

)3,2,1( , (40) 

 





N

k kxkxkx
kb

xxx

1
)3,2,1(

)3,2,1(3 . (41) 

     Then the following system of (3M by 2N) linear algebraic equations can be formed for 
determination of unknown coefficient ak and bk: 
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

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


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
 







,1,0

1 ),2,1(3
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,1),2,1(0)2,1(

1 ),2,1(

,1),2,1(0)2,1(

1 ),2,1(

Mm
N

k kHk
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kbkHk
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mxkakH

MmmxmxSmxmxS
N

k kHk
mxk

mx
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MmmxmxUmxmxU
N

k kHk
mxk

mx

ka







 (42) 

where mxmx 2,1  are collocation points m=1…M.  

     This system is overdetermined if 3M > 2N and therefore its approximate solution can be 
found by the least square method. It should be mentioned that a regularisation procedure is 
necessary in the case when the condition number of the matrix is large. As shown in 
Galybin [15] the SVD regularisation is efficient for medium size matrices while for large 
matrices one can use Tikhonov’s regularisation. 

3.3  A procedure for interface delamination detection 

The solution for the layer can be used to suggest a procedure for checking if the layer and 
the half-space are fully bonded or delamination has occurred on the interface x3=0. In the 
case of full bonding between the layer and the half-space the continuity of the stress and 
displacement vectors on the interface x3=0 should be satisfied. Otherwise they are violated. 
As follows from the solution for the lower half-space: 

 )0,2,1(ˆ)2,1()0,2,1(ˆ3 ssssss  , (43) 

     Therefore, 

 )0,2,1(33ˆ
2

1)0,2,1(2ˆ1)0,2,1(2ˆ1)0,2,1(3ˆ)2,1(
0

ss
G

ssussussuss  . (44) 

     After application of the inverse Fourier transform to eqn (44), it can be presented in one 
of the following equivalent forms (we assume that the solutions are smooth enough): 
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  














 dd

xx

G
uu

xxu
)0,2,1(

)0,,(332
1)0,,(21)0,,(21

2

1
)0,2,1(3

0 , (45) 

or 

 

  ( , , 0)1 11 22 3

2 ( , , 0)1 2
1( , , 0) ( , , 0) ( , , 0).1 2 1 2 1 2 1 2 33 1 22 0

u
d d

x x

u x x u x x x xG

 
 

   



   
 

   

      (46) 

     The solution of the Cauchy IVP for the layer determines two harmonic functions,  

one for the combination 1)2(332211
 Guu  and another for the normal 

displacement u3 in the layer as well as their boundary values. The normal stress is also 
known from eqn (39). Therefore, one can substitute these solutions into either eqn (45) or 
eqn (46) to check if the initial conditions given by eqn (28) satisfy them. Given that the 
strain/displacement measurements on the boundary x3=H are subjected to errors, eqns (45) 
and (46) should be satisfied approximately. Discussion of the choice of a proper level of 
approximation is beyond the scope of this paper. We should assume that if both eqns (45) 
and (46) are not fulfilled, then we expect the presence of a delamination on the interface. It 
can also be located by calculating the normal stresses that have to be close to zero on the 
surface of delamination. 

4  CONCLUSIONS 
This study concerns the 3D elastic problem for the coating bonded to a substrate from a 
dissimilar elastic material. We presented the system of integral equations for the Cauchy 
initial value problem for an elastic layer that followed from the analytical solution in the 
Fourier space. It is shown that the solution of the system is unstable because the system 
consists of the Fredholm equations of the first kind. A numerical procedure is suggested 
that can hamper instability. We have also presented the relationships that have to be 
imposed on the initial conditions that satisfy continuity of the stress and displacement 
vectors on the interface between the layer and the half-space.  

ACKNOWLEDGEMENT 
This work was supported by the grant of the Government of the Russian Federation No. 
14.Z50.31.0046. 

REFERENCES 
[1] Galybin, A.N. & Rogerson, G.A., Ill-posed problem of the Cauchy type for an elastic 

strip. Mathematics and Mechanics of Solids, 2019. (E-pub ahead of print). 
DOI: 10.1177/1081286519826395. 

[2] Shvab, A.A., Incorrectly posed static problems of elasticity. Solid Mechanics, 24, pp. 
98–106, 1989. 

[3] Bonnet, M. & Constantinescu, A., Inverse problems in elasticity. Inverse Problems, 
21, pp. R1–R50, 2005. 

 
 www.witpress.com, ISSN 1743-3533 (on-line) 
WIT Transactions on Engineering Sciences, Vol 126, © 2019 WIT Press

290  Boundary Elements and other Mesh Reduction Methods XLII



[4] Marin, L., Elliott, L., Ingham, D.B. & Lesnic, D., Boundary element method for the 
Cauchy problem in linear elasticity. Engineering Analysis with Boundary Elements, 
25(9), pp. 783–793, 2001. 

[5] Marin, L. & Lesnic, D., Boundary element solution for the Cauchy problem in linear 
elasticity using singular value decomposition. Computer Methods in Applied 
Mechanics and Engineering, 191(6), pp. 3257–3270, 2002. 

[6] Marin, L. & Lesnic, D., The method of fundamental solutions for inverse boundary 
value problems associated with the two-dimensional biharmonic equation. 
Mathematical and Computer Modelling, 42(3–4), pp. 261–278, 2005. 

[7] Galybin, A.N., A method for determination of stress distributions in the process zone 
ahead of a 2D crack. “Moving Boundaries VI” Computational Modelling of Free and 
Moving Boundary Problems, eds B. Sarler & C.A. Brebbia, WIT Press: 
Southampton, pp. 243–252, 2001. 

[8] Schwab, A.A., The inverse problem of elasticity theory: Application of the boundary 
integral equation for the holomorphic vector. Physics of the Solid Earth, 30(4), pp. 
342–348, 1994. 

[9] Moisil, G.C. & Theodoresco, N., Fonctions holomorphes dans l’espace. 
Mathematica, 5, pp. 141–153, 1931. 

[10] Galybin, A.N. & Irša, J., On reconstruction of 3D harmonic functions from discrete 
data. Proceedings of Royal Society A, 466(2119), pp. 1935–1955, 2010. 

[11] Paige, C.C. & Saunders, M.A., LSQR: An algorithm for sparse linear equations and 
sparse least squares. ACM Transactions on Mathematical Software, 8, pp. 43–71, 
1982. 

[12] Shevljakov, Y.A., Matrix Algorithms in the Theory of Elasticity of Inhomogeneous 
Media, Vischa Schola: Kiev and Odessa, p. 216, 1977. (In Russian.) 

[13] Vafa, J.P. & Fariborz, S.J., Analysis of rectangular cracks in elastic bodies. 
Theoretical and Applied Fracture Mechanics, 87, pp. 78–90, 2017. 

[14] Sih, G.C. & Liebowitz, H., Mathematical theories on brittle fracture. Fracture: An 
Advanced Treatise, vol. 2, ed. H. Liebowitz, Academic Press: New York, 1968. 

[15] Galybin, A.N., Contact inverse problem for an elastic half-space. Engineering 
Analysis with Boundary Elements, 68, pp. 35–41, 2016. 

[16] Galybin, A.N., Integral equations and Gauss–Chebyshev quadratures for planar 
rectangular cracks. International Journal of Mechanical Sciences, 146–147, pp. 272–
279, 2018. 

 
 www.witpress.com, ISSN 1743-3533 (on-line) 
WIT Transactions on Engineering Sciences, Vol 126, © 2019 WIT Press

Boundary Elements and other Mesh Reduction Methods XLII  291




