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ABSTRACT 
Vortex methods are a powerful tool for solving engineering problems of incompressible flow simulation 
around airfoils. The vorticity is considered as a primary computed variable. According to the  
Navier–Stokes equations written down in Helmholtz-type form (for 2D case), new vorticity is generated 
only on the surface line of an airfoil. Its intensity is unknown and can be found from the solution of the 
boundary integral equation resulting from the no-slip boundary condition satisfaction. The right-hand 
side of the integral equation in the simplest case depends on the incident flow velocity and vorticity 
distribution in the flow domain. For the velocity field computation, it is necessary to take into account 
the influence of all the vortices, which simulate the vorticity distribution in the flow. These vortices are 
moving in the flow with velocities calculated as sums of point-to-point vortex influences, so the 

computation complexity of such operation is proportional to 2N  where N is the number of vortices. In 
practice, N can have the order of tens or hundreds of thousands, up to a million, so the application of 
the “direct” method for velocities calculation becomes impossible. In this paper, two fast methods 
having logarithmic (proportional to logN N ) computational complexity are implemented and 
investigated. The first method is an analogue of the Barnes–Hut fast method for the N-body problem. 
The second one is based on fast solution of the Poisson’s equation with respect to the stream function 
on rather coarse mesh by using the fast Fourier transform technique with some special procedure for 
the results correction. Numerical complexity estimations for both methods are derived. Their sequential 
and parallel implementations are developed. Numerical experiments show that the FFT-based method 
is more efficient. Total acceleration compared with the “direct” method is over 1000 times for 500,000 
vortex elements. 
Keywords:  vortex methods, viscous incompressible media, vortex influence calculation, fast methods, 
Barnes–Hut-type method, Poisson equation, fast Fourier transform.  

1  INTRODUCTION 
In many engineering applications the problem of two-dimensional outer gas and fluid flows 
simulation with small subsonic speeds appears. If the flow compressibility can be neglected, 
the so-called vortex methods [1], [2] can be very efficient in comparison to well-known mesh 
methods for solving such problems, especially when we deal with large body displacements. 
We consider pure Lagrangian meshless modification of vortex methods, namely Viscous 
Vortex Domains method [3]; its main idea is considering the vorticity as a primary computed 
variable. The vorticity in the flow moves with the velocity which is superposition of the 
convective velocity and diffusive one caused by viscosity influence. It means that at every 
time step there are no vorticity generation in the flow domain (only the motion of existing 
one); new vorticity is generated on the airfoil surface line. Vorticity distribution in 2D vortex 
methods is simulated by a set of elementary vorticity carriers – vortex elements. Each of them 

is described by the position in the flow domain r


, small constant radius  and circulation 
 ,which is also assumed to be constant. The airfoil surface line K can be modelled with the 
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free vortex sheet of unknown intensity [4], so the problem is reduced to the solution of the 

boundary integral equation with respect to the vortex sheet intensity ( )r   following from 
the no-slip boundary condition satisfaction for the tangential velocities components [5] 
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where ( )n r
 

 is unit normal vector to the airfoil surface line K. This equation has to be solved 

at every time step. The right-hand side of eqn (1) is a known function which depends only on 
the incident flow velocity V 


 and vorticity distribution ( )r


 in the flow domain in the 

simplest case of immovable and non-deformable airfoil: 

 2

( )
( ) ( ) ( )

2 | |S

k r
f r r V dS

r
 

 
 

  
     

 

      , (2) 

where ( )r   is unit tangent vector to the airfoil surface line, k


 is unit vector orthogonal to 

the flow plane, ( ) ( )k n r r 
     . According to the mentioned vorticity distribution 

representation through a set of n vortex elements with circulations i , positions ir


 and radius 

 , the integral overflow domain in eqn (2) can be replaced by a sum over all vortex elements: 
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     After solving the integral eqn (1), all the vortex elements in the flow should be moved to 
new positions. Their movement is described by the system of differential equations 

( ) ( )i
i i

dr
V r W r

dt
 

   
, 

where ( )W r
   is the diffusive velocity, proportional to the viscosity coefficient [3]. This 

system is normally solved by Euler’s explicit method. The convective velocity ( )iV r
   is 

calculated in the similar way as the right-hand side eqn (3), but now it is necessary to calculate 
such a sum for all positions ir


 of the vortex elements: 
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     Vortex elements influences are inversely proportional to the distances to the 
corresponding vortex elements. So, at every time step it is necessary to calculate the vortex 
influence according to eqn (4) for every vortex element in the flow domain, that leads to the 
computational complexity proportional to 2n , where n is the number of vortex elements. 
This problem is similar to the n-body gravitational problem, where the calculating of the 
attractive forces between all the bodies is necessary.  
     It should be noted that vortex influence calculation is the most time-consuming operation 
in the whole algorithm of the vortex method; in some cases it can reach about 70% of the 
total execute time. In order to provide flow simulation with rather high accuracy, it is 
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necessary to consider large number of vortex elements – up to hundreds of thousands. Thus, 
the “direct” method of vortex influence calculation becomes impossible. The usage of 
multiprocessor systems and Nvidia graphic accelerators allows for solving this problem only 
partly. In Kuzmina et al. [6] it is shown that parallel technologies provide significant 
acceleration of the whole algorithm, especially using combined technologies MPI+CUDA. 
However, for some problems time of computations remains unacceptably high, for example, 
in case when the number of vortices exceeds about 100 000.  
     The aim of this research is implementation of the fast algorithms for vortex influence 
calculation permitting one to reduce the computational complexity of this operation. Two 
fast methods of logarithmic (proportional to logn n ) computational complexity for vortex 

influence calculation are considered: the Barnes–Hut-type method and the method based on 
fast solution of the Poisson’s equation with respect to the stream function on rather coarse 
mesh using fast Fourier transform technique with further solution correction. 

2  THE BARNES–HUT-TYPE METHOD  
The Barnes–Hut method [7] initially had been developed for the gravitational n-body 
problem and later adapted to vortex methods by Dynnikova [8]. The main idea of this method 
is that the influence of the groups of closely adjacent vortex elements on another such groups 
located far apart, can be calculated approximately using linearized formulae [8].  
     For this purpose, in the flow domain the hierarchical tree-structure of rectangular space 
domains (cells), containing all vortex elements, is constructed. The zero-level cell contains 
all vortex elements, and then it is divided across its long side into two first-level cells, each 
is reduced horizontally and vertically according to its vortices in order to exclude empty area. 
Next, similarly the second-level cells are constructed, etc. (Fig. 1). Such procedure continues 
until the target level is achieved or the cell contains single vortex.  
 

(a) (b)

(c) (d)

Figure 1:  Cells of the (a) 2nd; (b) 4th; (c) 6th; and (d) 8th levels. 

     The set of terminal vertices of the resulting tree contains all the vortex elements and for 
each cell the tree traversal is carried out according to the scheme in Fig. 2. Moreover, the 
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transition to lower level cells (red arrows) is carried out only if the “proximity criterion” for 
the current cell is satisfied (the distance between cells centers is compared with the sum of 
their sides).  
 

 

Figure 2:  Tree traversal scheme. 

     So, the Barnes–Hut-type algorithm of vortex influence computation at every time step of 
flow simulation consists of the following stages: 

1. Zero-level cell formation for all vortex elements existing at the current time step. 
2. Tree structure construction; determination of the terminal vertices. 
3. Calculation of the properties for every tree-cell such as centers of positive and 

negative vorticity and total circulations (also positive and negative). 
4. For every terminal tree cell 3 operations are performed:  

a. tree traversal in order to determine far-spaced cells from the current one and 
calculation of the coefficients in linearized representation of the vortex 
influence; 

b. calculation of the vortex influence from closely adjacent vortex elements 
(placed in the so-called “neighboring” zone) according to the direct eqn (4);  

c. accumulation of the influences calculated approximately (a) and exactly (b). 

     The “proximity criterion” used for “neighboring” cells determination depends on the 
adjustable parameter  (usually 0 1  ) which determines the accuracy of the method. For 

small values of this parameter ( 1  ) the Barnes–Hut method provides high accuracy, but 

it also has high computational complexity; increase of the parameter  leads to decreasing 
both the computational complexity and accuracy of the method. Numerical experiments 
show, that the value of the parameter  should not exceed 0.2…0.4 in order to provide the 
relative error at the level of 0.2%.  
     It should be noted, that number of tree levels k is also an adjustable parameter; it 
practically does not influence the accuracy of the method, but the computational complexity 
of the algorithm depends on its value significantly – deviation on 2–3 levels from the optimal 
value leads to increase of calculation time in 2 or more times. In Table 1, the relative time of 
the Barnes–Hut-type algorithm execution is given for the problems with large number of 
vortex elements (n = 100,000, n = 250,000, n = 500,000, n = 1,000,000), where the ratio of 
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times of computations is given for non-optimal and optimal numbers of tree levels (denoted 
as k  ); in brackets the acceleration of the algorithm compared to the “direct”  
Biot–Savart method (eqn (4)) is shown. Note, that hereinafter the algorithm execution time 
means the vortex influence calculation at one time step.  

Table 1:    Time of computations ratio for the Barnes–Hut method at optimal and non-optimal 
number of tree levels and different number of vortices. 

Relative calculation time 
k k

t t 
 ( k   is an optimal number of tree levels) 

n = 100,000 
k* = 14

n = 250,000 
k* = 15

n = 500,000 
k* = 16

n = 1,000,000 
k* = 17 

K k k
t t 

 k k k
t t  k k k

t t  K k k
t t 

 

12 1.76 13 2.02 14 1.78 15 1.91 
13 1.20 14 1.19 15 1.23 16 1.10 

14 
1.00 

(22.3) 
15 

1.00 
(40.5)

16 
1.00 

(64.8)
17 

1.00 
(92.8) 

15 1.36 16 1.17 17 1.25 18 1.24 
16 2.18 17 1.92 18 2.08 19 2.11 

 
     In order to estimate parallel properties of the algorithm (its scalability), taking in mind the 
possibility of its parallel version development, in Table 2 the contributions in percent of the 
above mentioned main operations to the total execution time of the Barnes–Hut algorithm 
are shown for the model problem with n = 1,000,000 vortex elements and different numbers 
of tree levels k. Here the operation 1 is the operation of tree construction (stage 2), operation 
2 is coefficients calculation (stage 4a), operation 3 is direct influence calculation in 
neighboring zone (stage 4b), t1 is calculation time for the Barnes–Hut method, t2 is calculation 
time for the direct method, s is the achieved acceleration. 

Table 2:    Contributions of the main operations in the Barnes–Hut algorithm at different 
number of tree levels. 

Levels Operation 1 Operation 2 Operation 3 Other ops. 
15 0.95% 2.82 96.22 0.01 
16 1.69% 11.58 86.70 0.03 
17 1.90% 30.59 67.44 0.07 
18 1.57% 60.61 37.77 0.05 
19 1.00% 78.53 20.43 0.04 

 
     It is seen that with increasing number of levels the point-to-point stage of calculations 
(Operation 3) is decreased, while that the stage of coefficients calculation (Operation 2) 
increases.  
     The parallel version of the Barnes–Hut method for vortex influence computation was 
implemented using both MPI (Message Passing Interface, for cluster systems) and OpenMP 
(Open Multi-Processing, for systems with shared memory) technologies. Taking into account 
that stages 4a–4c of the Barnes–Hut algorithm can be executed independently for the terminal 
tree cells, the simplest way of parallelization is to split the terminal cells onto MPI-processes, 
including additional parallelization using OpenMP technology for each process. Due to small 
contribution of the tree construction procedure (less than 2%, according to Table 2), it is not 
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parallelized and executed simultaneously by all the MPI processes. The achieved values of 
acceleration are shown in Table 3 for the problem with large number of vortex elements  
(n = 1,000,000) for one, two and three cluster nodes. It is seen, that the most efficient is 
hybrid (MPI + OpenMP) parallelization. 

     Taking into account, that the optimal variant of the Barnes–Hut method (for 17 tree levels) 
provides 92,8 times acceleration in comparison to the direct method in sequential mode 
(Table 2), now we obtain, that its parallel version, being run on 3 nodes, provides total 
acceleration of about 810 times. Thus, the total time of computation can be reduced from 
approximately 165 minutes (2.75 hours) to about 12 seconds.  
     However, despite the similarity the problem of vortex influence calculation and n-body 
gravitational problem, there is a significant difference. In gravitational problem due to 3D 
problem statement, the attractive force, caused by one body decreases proportionally to the 
squared distance, whilst the two-dimensional problem statement in vortex methods leads to 
influence decreasing with the first degree of the distance only, so the efficiency of the 
Barnes–Hut algorithm in vortex method is lower in comparison to the original gravitational 
problem. Thus, it is interesting to investigate other possible ways to approximate fast vortex 
influence calculation. 

3  THE FFT-BASED METHOD 
This method is based on the similar idea as the Barnes–Hut method: the influence of the 
vortex elements, placed if far-spaced regions can be calculated approximately. Such 
influence can be calculated fast due to the possibility of the Poisson’s equation fast solution 
with respect to the stream-function using fast Fourier transform (FFT) technique [9].  

The velocity can be represented through the stream-function as  ( ) ( )V r r k
  

, 

where the stream-function   satisfies the Poisson’s equation with known right-hand side  

( )r  


. (5) 

     The solution of such equation can be represented as the convolution of the Green’s 
function ( )G r


 and the right-hand side, so for the velocity ( )V r

   we obtain the following eqn:
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Table 3:    Acceleration results using MPI and OpenMP technologies for the Barnes–Hut 
algorithm. 

Number of nodes 1 2 3

1 OpenMP thread per node (per MPI process) 

Time, sec 106.13 54.02 36.67 
Acceleration, times 1.00 1.96 2.89 

4 OpenMP threads per node (per MPI process) 

Time, sec 30.84 16.82 12.11 
Acceleration, times 3.44 6.31 8.76 

4 MPI processes per node 

Time, sec 33.58 18.20 13.17 
Acceleration, times 3.16 5.83 8.06 
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 If rectangular uniform mesh is introduced, which contains 
x yM M  nodes in horizontal 

and vertical directions, respectively, the integral in eqn (6) can be approximately replaced 
with a sum over all the mesh nodes: 

1 1
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where 
ij  are the nodal values of vorticity, i.e., the vorticity should be projected somehow 

onto the nodes in such a way, that the following condition is satisfied: 
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     We consider rather coarse mesh, that means 
x yM M n , and now describe briefly the 

main stages of the FFT-based fast method of vortex influence calculation: 

1. To calculate the nodal circulations 
ij  using some smoothing operator, for example, 

introduced in Monaghan [11].
2. To calculate vector kernel components

2
( ) { , }
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at mesh nodes. For the origin point {0, 0}r 


 we assume ( ) {0, 0}Q r 
  . Nodal values 

of xQ  and 
yQ  form matrices xQ  and yQ , respectively. 

3. To quadruple the mesh domain is by its extension to the right and upper directions
(reflection technique) in order to satisfy the boundary conditions (zero velocity on
infinity). In additional nodes the matrices xQ  and yQ  are extended symmetrically

and skew-symmetrically [10], circulation values
ij  are assumed to be zero. All 

following stages should be performed for obtained extended matrices.
4. To perform two-dimensional fast Fourier transform [9] for the abovementioned

matrices xQ , yQ , ; the resulting complex-valued images are ˆ xQ , ˆ yQ , ̂.

5. According to the well-known feature of the FFT, the nodal values of eqn (7) image
form the matrix, which components are calculated as elementwise multiplications of
two matrices, so as a result we obtain two matrices, consist of the images of the
velocity components nodal values: ˆˆ ˆx xV Q   and ˆˆ ˆy yV Q  .

6. To perform inverse fast Fourier transform procedure and obtain matrices of nodal
values of horizontal and vertical velocity components xV  and yV .

7. To interpolate the velocity nodal values onto vortices placed in the corresponding
mesh cells.

     Due to coarse mesh usage, a significant error occurs. In particular cell it is caused mainly 
by significant error in influence calculation from the vortex elements, placed in this cell itself 
and in the neighboring zone, so the correction procedure should be performed. It is necessary 
to exclude the “incorrect” influence calculated at the Poisson’s equation solution only from 
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the vortices from neighboring zone and add the “correct” influence, calculated point-to-point 
using eqn (4). So, the following algorithm [10] should be performed for each mesh cell. 

1. Calculation of the correction matrix:  
a) the vortex of unit circulation is placed in arbitrary mesh cell; 
b) using the same smoothing operator, which have been used for nodal values 

ij  

calculation, its circulation is redistributed onto 16 nearest nodes (black points in 
Fig. 3), the resulting nodal circulations vector is { } ;  

 

 

Figure 3:  Neighboring zone of the cell. 

c) the steps 4–6 of the basic algorithm are performed for this “sub-problem”; as a 
result we obtain the velocities at 64 nearest nodes (black and white points in Fig. 
3). Due to 2D problem statement, the resulting vector { }V  has 128 components; 

d) based on assumption of linear dependence between velocity and circulation 
vectors we obtain the matrix equality { } [ ]{ }V C  , where [ ]C  is correction 

matrix having size 128 16; 
e) the 15 similar sub-problems are considered in order to construct the system of 

equations for correction matrix components; note, that for every sub-problem the 
unit vortex is placed in different position to avoid a singular matrix. 

2. After constructing a correction matrix [ ]C , the influences of the vortices placed in 

the neighboring zone of each cell can be excluded. For this purpose, for each cell 
the circulations of the vortices contained in it are redistributed onto 16 nearest nodes; 
the resulting vector is { } [ ]{ }V C   which means the current cell influence on its 

neighboring zone. Corresponding nodal velocities are kept save for each cell and 
they are summarized with analogous influences from other cells in neighboring zone 
(for the cells, which do not refer to the neighboring zone such influence will be equal 
to zero). Thus, for all the cells we can exclude incorrectly calculated influence of 
the vortices places in the neighboring zones.  

3. For each cell now it is necessary to add the correctly (exactly) calculated vortex 
influence from its neighboring zone according to the Biot–Savart law (eqn (4)): 
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where iB  means the set of vortices in the i-th cell; iB   means the set of vortices in its 

neighboring zone to the i-th cell (not including the i-th cell itself). 

3.1  Numerical experiment 

The model problem with 500 vortex elements was considered (Fig. 4). The mesh 16 x 16 was 
considered  for  the numerical  solution of the  Poisson’s equation vo; rtices circulations were 
chosen arbitrary ( 0.01 0.01i    ). 

Figure 4:    Model problem statement: vortex elements distributed uniformly in the  
unit square. 

     At Fig. 5 the streamlines of the velocity field are shown for the central mesh cell before 
the correction procedure performing (Fig.5 (a)) and after this procedure (Fig. 5(b)). Here the 
streamlines, obtained using the direct eqn (4), are shown in red color; the streamlines obtained 
using the FFT-based method are shown in blue color. It is apparent that velocities obtained 
using the fast solution of the Poisson’s equation (without correction) are quite different from 
the real ones calculated directly point-to-point, while the correction permits to achieve quite 
accurate results. 
     Calculation for the vortices in the central cell: 

 .  (10) 

     A quantitative empirical estimation was obtained also for the accuracy of velocities where 

 is relative error the velocities calculation; – exact value of the velocity of the i-

th vortex element, calculated “directly” according to eqn (4); – approximate value,

calculated using the FFT-based method. The maximum in the denominator is calculated over 
the vortices in the central cell. Numerical results for different sizes of the neighboring zone, 
i.e., numbers of cell layers around each cell, are shown in Table 4. Zero number of cell layers
corresponds to the algorithm without correction stage. 
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(a) 
 

(b)

Figure 5:   Velocities streamlines in the central mesh cell. (a) Before correction procedure; 
and (b) After it. 

Table 4:  Relative error of the FFT-based method.  

Number of cell layers 0 1 2 3 4 
max iV  0.2840 0.0326 0.0024 0.0017 0.0003 

 
     It is seen, that the error of the algorithm without correction exceeds 20%, which makes 
the algorithm inapplicable in practice. Three cell layers in the neighboring zone (i.e., the 
neighboring zone in this case consists of 49 cells including the central cell itself) provides 
the error level less than 0.2%. Further neighboring zone size increase provides smaller error: 
0.03% for 4 cell layers, however the neighboring zone here consists of 81 mesh cells that 
leads to significant growth of the algorithm computational complexity.  
     At the same time number of numerical experiments, performed in order to investigate the 
properties of the vortex methods algorithms, shows the error level of 0.2% is acceptable for 
the majority of problems, being solved by vortex methods. This level of the error is 
comparable with the error, arising from the boundary integral equation discretization, which 
determines the vorticity generation on the airfoil surface line. Therefore, it seems to be 
optimal from point of view of the ratio between the method accuracy and computational time 
to choose the size of the neighboring zone to be equal 3 cell layers, as it is shown in Fig. 3. 

3.2  Complexity estimation of the algorithm  

Note, that the accuracy of the FFT-based method practically does not depend on the mesh 
size, used for solving of the Poisson’s problem, however it influences significantly the 
computational complexity of the method in the whole.  
     In order to estimate the computational complexity, we assume that n vortex elements are 
distributed uniformly in the square domain, mesh cells are squares, and there are equal 
numbers of the mesh nodes (equal to M) in horizontal and vertical directions. We assume 
additionally, that there are no vortex elements in the outer layer of the cells, similarly to 
shown in Fig. 4: this permits to use known smoothing kernel 4M  [11] for vorticity 

redistribution from the vortex elements onto mesh nodes and satisfy eqn (8). 
     Taking into account only the operations of multiplication and division, it is possible to 
estimate the complexities of the following algorithm stages: 
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1. Circulations calculation at mesh nodes (redistribution) and correction procedure. 
2. Fast Fourier Transform and inverse Fourier transform; we take into account, that the 

FFT-based algorithm is implemented at every time step, so for the fixed mesh it is 
possible to compute matrices xQ , yQ  and perform 2D FFT for them (resulting 

matrices ˆ xQ , ˆ yQ ) only once. Thus, at every time step the FFT should performed 

only for matrix  and two inverse transformations should be performed for matrices 
ˆ xV  and ˆ yV  in order to obtain nodal values of velocity components. 

3. Interpolation procedure from the mesh nodes onto the vortex elements.  

The theoretical complexities estimations are the following:  
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     It is also important to estimate the mentioned operations contributions to the method 
complexity; it significantly depends on the number of mesh nodes. With nodes number 
increasing the contributions 1Q  and 2Q  decrease, while 3Q  increases significantly. As an 

example, we consider the problem with n = 1 000 000 vortex elements and numbers of mesh 
nodes M = 128 and M = 512. The nodes numbers are chosen equal to power of two (2k) 
because that makes it possible to perform the FFT procedure optimally. The comparison of 
the numerical results (blue columns) and theoretical estimations (red columns) of the 
operations 1Q , 2Q  and 3Q  contributions are shown in the diagrams in Fig. 6. A good 

agreement between the numerical results and theoretical estimations is seen. 
 

(a) 
 

(b) 

Figure 6:    The main operations contributions in the FFT-based algorithm for the meshes 
consist of M = 128 nodes (a) and M = 512 nodes (b) in both directions. 

     The parallel version of the FFT-based algorithm was implemented using both MPI and 
OpenMP technologies, similarly to the above discussed parallelization scheme for the 
Barnes–Hut method. Note, that in the present implementation the FFT transformation (direct 
and inverse) procedure is performed sequentially, by using the Eigen library 
(http://eigen.tuxfamily.org). The achieved values of acceleration are shown in Table 5 for the 
problem with large number of vortex elements (n = 1,000,000) for one, two and three  
cluster nodes.  
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Table 5:  Acceleration using MPI and OpenMP technologies for the FFT-based algorithm. 

Nodes number 1 2 3
1 OpenMP thread per node (per MPI process)

Time, sec 4.52 2.82 2.24 
Acceleration, times 1.00 1.60 2.02 

4 OpenMP threads per node (per MPI process)
Time, sec 2.12 1,64 1.41 

Acceleration, times 2.13 2.76 3.21 
4 MPI processes per node

Time, sec 1.79 1.48 1.40 
Acceleration, times 2.53 3.05 3.23 

 
     Thus, the parallel implementation of the FFT-based method, being run on 3 nodes 
provides total acceleration of about 7000 times, that means that the total time of computation 
can be reduced from approximately 165 minutes (2.75 hours) to about 1.4 seconds. Note, that 
MPI parallelization is more efficient in comparison to hybrid (MPI + OpenMP) approach. 

4  COMPARISON OF THE TWO FAST METHODS 
In order to compare the efficiency of two fast methods for vortex influence calculation, four 
different problems with large number of vortex elements (n1 = 100,000, n2 = 250,000,  
n3 = 500,000, n4 = 1,000,000) were considered. The values of the adjustable parameters of 
both methods (coefficient  in proximity criterion and number of tree levels k in the Barnes–
Hut method; number of cell layers in the neighboring zone and number of nodes in the mesh 
in the FFT-based method) were chosen optimally; the relative error (10) in all cases was less 
than 0.2%. In Table 6 time of computations in seconds is given for all the mentioned problems 
(all the computations are performed in sequential mode).  

Table 6:  Time of computations (in sec.) for all the methods for different number of vortices. 

 n1 = 100,000 n2 = 250,000 n3 = 500,000 n4 = 1,000,000 

Biot-Savart (direct) 
method 

98.5 615.6 2462.2 9848.9 

Barnes–Hut method 4.43 15.21 38.02 106.13 
FFT-based method 0.47 1.10 2.47 4.52 

 
     The achieved acceleration is shown in Table 7 in comparison to the direct method 
(computations according to the Biot–Savart law (eqn 4)). It is clearly seen that the FFT-based 
method is much more efficient in comparison to the Barnes–Hut-type method; for example, 
time of computations is nearly the same for 1 100 000n   using the Barnes–Hut method and 

for 4 1 000000n   using the FFT-based method. 

Table 7:  Fast methods acceleration in times.  

 n1 = 100,000 n2 = 250,000 n3 = 500,000 n4 = 1,000,000 

Barnes–Hut method 22 40 65 93 
FFT-based method 210 560 997 2179 
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5  CONCLUSIONS 
In the present paper two different methods of vortex influence computation were 
implemented and investigated. Both methods have the logarithmic (n log n) computational 
complexity and can be efficiently applied in case the number of vortex elements n is about 
few hundreds of thousands, up to one million. Both methods have some adjustable 
parameters, such as the coefficient in the proximity criterion in the Barnes–Hut method and 
the number of cell layers in the neighboring node in the FFT-based method, which effect the 
ratio between the accuracy and time of computations. The other parameters – number of tree 
levels in the Barnes–Hut method and mesh size in the FFT-based method practically do not 
affect the accuracy, but their values determine the computational complexity of the 
corresponding algorithms. It is found, that the FFT-based method is at least 10 times more 
efficient in comparison to the Barnes–Hut method. Parallel implementations of both methods 
are developed using OpenMP and MPI technologies; their efficiencies are investigated for a 
small number of processors/cores. 
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